Зрительные рецепторы в сетчатке

Рецепторы сетчатки глаза

Рецептор — это сложная составляющая глаза, состоящая из нервных окончаний и других специализированных тканей. Благодаря им, наш организм воспринимает информацию из вне и доносит ее до нашего головного мозга. Вешнюю информацию могут принимать наши глаза в виде света, барабанные перепонки в ушах, рецепторы кожи. При приеме пищи, информацию передают рецепторы, которые находятся на языке.

По своему строению рецепторы подразделяются на простейшие и высокоорганизованные. Простейшие состоят из одной клетки. Высокоорганизованные состоят из большого количества клеток.
Так же рецепторы бывают:
— кожные;
— мышц и сухожилий;
— связок;
— сетчатки глаза.
Сетчатка глаза — это замысловатое переплетение нервных волокон и нервных клеток, которые соединены между собой. Они обеспечивают связь глаза с головным мозгом.

Более подробно рассмотрим рецепторы сетчатки глаза. Их принято разделять на палочки и колбочки. Палочки воспринимают окружающую среду в ночное время суток (их толщина 2 мкм, а высота 30 мкм). В глазу их насчитывается около 130 миллионов палочек. Колбочки воспринимают окружающую среду во время дневного освещения (их толщина составляет 6-7 мкм, а высота 10 мкм). В строении глаза их находится около 7 миллионов штук. Нахождение рецепторов в глазу неравномерно. На сетчатке глаза есть область, которая находится чуть в стороне от оптической зоны, близко около височной части. Она имеет желтый цвет, поэтому ее называют желтым пятном. В ней есть небольшое углубление, оно называется центральной ямкой. Со стороны желтого пятна, в направлении к этой ямке, почти все слои стираются и остаются только колбочки и палочки. На дне самой ямочки находятся только колбочки, палочек там совсем нет. Диаметр желтого пятна составляет около 1 мм., а диаметр центральной ямки — около 0,4 мм. Около желтого пятна больше находится палочек, колбочек в разы меньше. К краям сетчатки, число палочек стремительно снижается, а число колбочек увеличивается. На самом краю находятся только колбочки.

Глазная палочка человека состоит из 4 составляющих:
— наружный сегмент;
— внутренний сегмент;
— связующий сегмент;
— базальный сегмент.

Палочки глаза очень чувствительны по своей природе. Они способны распознавать малейший проблеск света. Поэтому наши глаза способны видеть и различать разные предметы в сумерках и в ночное время суток. Палочки не могут различать цвета, они реагируют только на цвет. Поэтому ночью мы все видим в черно-белых тонах. Так же эти рецепторы очень плохо улавливают световое движение и плохо улавливают движение в темное время суток. По этой причине, палочки не обладаю хорошей остротой зрения.

Внутри желтого пятна к колбочкам тянутся волокна зрительного нерва. За пределами этого пятна, одно волокно обслуживает большие группы колбочек и палочек. Поэтомй, все восприятие в середине ямки воспринимается четко и правильно. Чем больше удаленность от желтого пятна, тем больше получается размытость изображения, передаваемого в головной мозг. Если же изображение вообще сходит с пятна, то картинка в головной мозг не предается и мы ничего не можем увидеть. Это получается по причине того, что радиус обзорности пятна составляет 1. Периферическая доля сетчатки предназначена для лучшей ориентации в пространстве.

В составе палочек находится пигмент родопсин. Он появляется с возникновением сумерок и разрушается при свете. Благодаря пигменту йодопсину у колбочек есть возможность реагировать на появление света.

Помимо йодопсина и родопсина в глазном дне есть еще черный пигмент. Который защищает глаза от очень сильных световых раздражителей. Когда нет раздражителей — пигмент расположен на задней поверхности сетчатки, когда появляется яркий свет — то он перемещается навстречу яркому лучу, тем самым блокирует его негативное воздействие на глаз человека.

В глазу человека есть слепое пятно. В нем не содержатся ни палочки, ни колбочки. Из-за этого слепое пятно не чувствительно к свету. Его диаметр около 1,88 мм, а радиус зрения 6 градус. Если предмет взгляда человека попадет на это пятно, то часть предмета диаметром 10 см, человек увидеть не сможет.

Для определения наличия слепого пятна в глазу, нужно поднести на расстоянии 10 см к глазу человека рисунок. Прикрыть левый глаз, а на точку на рисунке смотреть правым глазом. При перемещении рисунка в сторону, в один момент вы не увидите рисунка. Это и есть слепое пятно глаза.

Источник

Зрительные рецепторы в сетчатке

Большую часть информации (до 90 %) об окружающем нас мире мы получаем посредством зрения. Но зрительный анализатор – это не только наш орган зрения, глаз. Весь процесс видения состоит из трех этапов, но самый важный – светочувствительные рецепторы. Для тех, кто не помнит: это колбочки и палочки. Зрительные рецепторы располагаются в одной из оболочек глазного яблока – сетчатке. О зрительном анализаторе расскажем в данной статье. А еще о том, как устроены и где находятся зрительные рецепторы, воспринимающие цвет.

Общие сведения

Процесс видения – сложный и состоит из следующих этапов:

  1. Концентрация информации на маленьком поле. Этой функции подчинена вся оптическая система глазного яблока: роговица, влажная камера глаза, зрачок, хрусталик, стекловидное тело.
  2. Фоторецепторная часть, где происходит перевод электромагнитного излучения света на язык порогового сопротивления мембран и потока нейромедиаторов, в результате чего образуется нервный импульс. Зрительные рецепторы расположены в оболочке глаза, называемой сетчаткой.
  3. Анализ и обработка информации в зрительных долях затылочной части коры больших полушарий головного мозга. При этом сетчатка, где располагаются рецепторы зрительного анализатора, является «филиалом» головного мозга. Частичный анализ видения начинается в ней.

В статье мы сосредоточимся на той части зрительного анализатора, где располагаются рецепторы, на светочувствительной оболочке глаза и на строении самих рецепторов – колбочек и палочек. Если вы не полностью понимаете, что такое рецепторы, читайте статью: https://www.syl.ru/article/386286/chto-takoe-retseptoryi-naznachenie-vidyi-i-printsipyi-funktsionirovaniya, где этот термин детально описан.

зрительные рецепторы сетчатка

Сетчатая оболочка

Ретина (сетчатка) – внутренняя оболочка глазного яблока, где располагаются зрительные рецепторы. В плане световосприятия это самая важная часть глаза.

Эта оболочка генетически составляет единое целое со зрительным нервом. Внутренняя ее поверхность граничит со стекловидным телом, а снаружи — с сосудистой оболочкой. Зрительные рецепторы располагаются в задней зрительной части сетчатки, которая, в свою очередь, состоит из пигментного и нервного слоя:

  • Пигментный слой ретины прилегает к сосудистой оболочке, клетки имеют микроворсинки, которые прилегают к фоторецепторам. Именно они обеспечивают последние всеми необходимыми для жизнедеятельности веществами. Еще одна функция пигментного слоя сетчатки – это поглощение части света, который прошел через фоторецепторный слой.
  • Нервный слой ретины состоит из 9 слоев, не разделенных физиологически. Самый важный элемент данного слоя и смысл его существования – в зрительных рецепторах. Располагаются они в верхних слоях сетчатки. В цитологическом плане световоспринимающие клетки – это высокоспецифичные сенсорные нейроны. Они представлены двумя типами клеток.
Читайте также:  Народные средства лечения отека сетчатки

зрительные рецепторы строение

Палочки и колбочки

В сетчатке глазного яблока человека палочек — 120 миллионов, а колбочек – 7 миллионов. И расположены они неравномерно.

Колбочки, которые работают при ярком свете и отвечают за цветное восприятие, сосредоточены в центральной части сетчатки. Особенно их много в области центральной ямки (фовеа) – самого высокочувствительного места сетчатки.

Палочки расположены преимущественно на периферии и отвечают за сумеречное зрение при невысокой освещенности.

зрительные рецепторы палочки

Общий план строения фоторецепторов

Как уже говорилось, палочки и колбочки – это сенсорные нейроны, в строении которых выделяют три сегмента:

  1. Наружный. Этой частью рецепторные клетки вдаются в пигментный слой. У палочек этот сегмент тонкий и цилиндрический, образован фоторецепторными дисками, в которых содержится белок родопсин. У колбочек он более утолщенный, а фоторецепторных дисков намного меньше, чем в палочках. В дисках содержится пигмент йодопсин. Последний состоит в свою очередь из нескольких пигментов, которые чувствительны к желто-зеленой части спектра (хлоролаб), к желто-красной части (эритролаб) и к синей части спектра (цианолаб).
  2. Цилия. Это тонкая ножка, которая соединяет наружный и внутренний сегменты.
  3. Внутренний. Тут находятся ядро, клеточные органеллы (митохондрии, комплекс Гольджи, эндоплазматическая сетка, рибосомы). В этой части протекают все метаболические процессы клетки. Оконечность этого сегмента переходит в аксон нейрона.

зрительные рецепторы располагаются

Функционал палочек

Сетчатка, где располагаются зрительные рецепторы, обеспечивает фоторецепцию. При этом функционально колбочки и палочки имеют свои особенности восприятия.

Для формирования нервного импульса, а значит, и светочувствительности палочек достаточно всего лишь одного фотона света. Именно этим и обеспечивается сумеречное зрение. Но палочки не различают цвета, ведь их пигмент родопсин состоит из двух белков – хромофора и опсина. Таким образом, формируется два максимума светопоглощения – на уровне ультрафиолета (278 нм) и на границе между зеленым и синим спектром (498 нм).

На свет пигмент палочек реагирует медленнее, чем пигменты колбочек. Именно поэтому палочки слабо реагируют на динамику потока света и плохо различают движущиеся объекты.

зрительные рецепторы колбочки

Разноцветные колбочки

Для возбуждения колбочек необходимо наличие светового потока в десятки раз более интенсивного, чем для палочек. Именно поэтому в темноте все кошки серые – колбочкам не хватает света для различения цветов.

Скорость обработки сигналов колбочками высокая, они хорошо воспринимают динамику света и движущиеся объекты. А также фокусируют более четкое изображение.

Колбочки делятся на три вида по преобладанию в них одного из трех пигментов. В тех, где больше эритролаба, фиксируются световые потоки желто-красной части спектра, хлоролаба – желто-зеленой, цианолаба – зелено-синей части.

зрительные рецепторы располагаются в

Патологии, связанные с фоторецепторным аппаратом

Нарушения в работе рецепторов и патологии самой сетчатой оболочки глаза могут приводить к различным нарушениям зрения и восприятия. Например:

  • С нарушением работы колбочек связано заболевание дальтонизмом, который бывает трех видов в зависимости от того, какого пигмента в колбочках нет. Чаще всего дальтонизм является наследственным недугом.
  • С патологиями палочек связана гемералопия (куриная слепота) – снижение зрения в сумерках.
  • Дегенерация пигментного слоя сетчатки связана с разрушением клеток пигментного слоя. Чаще это наследственная патология, но причины ее развития и сегодня не выяснены.
  • Хориоретинит. В воспалительный процесс вовлекается сетчатка и сосудистая оболочка. Этиология болезни связана с инфицированием различными микроорганизмами (бактериями туберкулеза, трепонемами сифилиса, токсоплазмой, паразитическими кокками, вирусами)
  • Отслоение сетчатки. На фоне микроразрывов под сетчатку проникает стекловидное тело и сама оболочка отходит от сосудистого слоя. Причин такой болезни много, от врожденных патологий (недоношенность) до онкологических заболеваний и механических повреждений.

Источник

Запрос «Зрение» перенаправляет сюда; об альбоме певицы Линды см. Зрение (альбом).

Проводящие пути зрительного анализатора:
1 — Левая половина зрительного поля,
2 — Правая половина зрительного поля,
3 — Глаз,
4 — Сетчатка,
5 — Зрительные нервы,
6 — Глазодвигательный нерв,
7 — Хиазма,
8 — Зрительный тракт,
9 — Латеральное коленчатое тело,
10 — Верхние бугры четверохолмия,
11 — Неспецифический зрительный путь,
12 — Зрительная кора головного мозга.

Зри́тельная систе́ма (зри́тельный анализа́тор, о́рган зре́ния) — бинокулярная (стереоскопическая) оптическая система биологической природы, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра (свет), создавая ощущение положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.

Нормальным раздражителем органа зрения является свет. Под влиянием света в палочках, колбочках (см. ниже) и светочувствительных ганглионарных клетках происходит распад зрительных пигментов (родопсина, йодопсина и меланопсина). Палочки функционируют при свете слабой интенсивности, в сумерках; зрительные ощущения, получаемые при этом, бесцветны. Колбочки функционируют днём и при ярком освещении; их функция определяет ощущение цветности.

Человек и многие другие животные обладают бинокулярным зрением, обеспечивающим возможность воспринимать объёмное изображение. Большинство дневных животных также обладает способностью различать отдельные цвета солнечного света (цветовое зрение).

Анатомия[править | править код]

Зрительная система (зрительный анализатор) у млекопитающих включает следующие анатомические образования:

  • периферический парный орган зрения — глаз (с его воспринимающими свет фоторецепторами — палочками, колбочками и светочувствительными ганглионарными клетками сетчатки);
  • нервные структуры и образования ЦНС: зрительные нервы, хиазма, зрительный тракт, зрительные пути — II пара черепных нервов, глазодвигательный нерв — III пара, блоковый нерв — IV пара и отводящий нерв — VI пара;
  • латеральное коленчатое тело промежуточного мозга (с подкорковыми зрительными центрами), передние бугры четверохолмия среднего мозга (первичные зрительные центры);
  • подкорковые (и стволовые) и корковые зрительные центры: латеральное коленчатое тело и подушки зрительного бугра, верхние холмики крыши среднего мозга (четверохолмия) и зрительная кора.

Кровоснабжение[править | править код]

Кровоснабжение осуществляется из бассейна внутренней сонной артерии по глазным артериям. Сетчатка кровоснабжается центральной артерией сетчатки, которая проникает в глаз в составе (в толще) зрительного нерва, а также получает кровь из сосудистой оболочки глаза. Слёзная железа получает кровь из слёзной артерии. Мышцы глаза — из одноимённых артерий.

Венозная кровь от различных структур и образований глазного яблока оттекает по одноимённым венам, которые сливаясь образуют верхнюю и нижнюю глазные вены. От сетчатки кровь оттекает в центральную вену сетчатки, из сосудистой оболочки — в четыре вены, впадающие в глазные вены.

Читайте также:  Отек сетчатки по мкб 10

Дополнительные структуры глаза[править | править код]

Мышцы[править | править код]

Внешние мышцы глазного яблока (6)[1]:

  • наружная прямая мышца глаза;
  • внутренняя прямая мышца глаза;
  • нижняя прямая мышца глаза;
  • верхняя прямая мышца глаза;
  • нижняя косая мышца глаза;
  • верхняя косая мышца глаза.

Орбиты[править | править код]

Орби́та (глазни́ца) — парная полость в черепе, представляющая собой пирамидальную впадину, обладающую основанием, вершиной и четырьмя стенками. Содержит глазное яблоко с его придатками[2].

Слёзный аппарат[править | править код]

Слёзный аппарат состоит из слёзных желез и системы слёзных путей. Выделяет и транспортирует к глазному яблоку слёзную жидкость (слезу), вырабатываемую гардеровыми или слёзными железами для смачивания и очищения поверхности глаза у земноводных, пресмыкающих, птиц и млекопитающих. Эта жидкость прозрачная, слегка опалесцирует, имеет слабощелочную реакцию (норма рН слёзной жидкости: 7,3…7,5). Вырабатываемая слёзная жидкость по выводным канальцам (лат. ductuli excretorii) поступает в конъюнктивальный мешок (лат. saccus conjunctivae) и скапливается в нём, а оттуда движением век переносится на роговицу. После этого слёзная жидкость через слёзоотводящие пути — слёзное озеро (лат. lacus lacrimalis), слёзные канальцы (лат. canaliculi lacrimales), слёзный мешок (лат. saccus lacrimalis) и слёзно-носовой проток (лат. ductus nasolacrimalis) — уходит в нижний носовой ход[3][4].

Глаза[править | править код]

Основная статья: Глаз

У животных и человека органами зрения являются глаза. Высокоорганизованными (способными создавать изображения предметов и обеспечивать предметное зрение) глазами обладают, помимо позвоночных, головоногие моллюски и многие членистоногие, а также отдельные представители других типов животных — книдарий, кольчатых червей, плоских червей.[5] Фасеточные глаза насекомых имеют принципиально отличное строение по сравнению с камерными глазами позвоночных и головоногих, однако связаны с ними постепенными переходами сравнительно-морфологического ряда.

Альтернативные способы ориентирования в пространстве[править | править код]

Существуют сходные по функции со зрением другие сенсорные системы, применяемые для ориентирования в пространстве, например, ультразвуковая эхолокация летучих мышей и китообразных, позволяющая им обнаруживать мельчайшие объекты, электролокация некоторых рыб и утконоса, тепловая локация гремучих змей.

Также для ориентирования в пространстве применяются обоняние (наиболее характерен в этом смысле язык у змей, хотя так же широко известны в качестве примера ориентации по запаху у собаки), слух (боковая линия у рыб), и тактильные ощущения (восприятие давления и температуры, ощупывание).

Эволюция зрительной системы[править | править код]

Беспозвоночные[править | править код]

Как установлено с помощью методов генетической трансформации, гены eyeless дрозофилы и Small eye мыши, имеющие высокую степень гомологии, контролируют развитие глаза: при создании генноинженерной конструкции, с помощью которой вызывалась экспрессия гена мыши в различных имагинальных дисках мухи, у мухи появлялись эктопические фасеточные глаза на ногах, крыльях и других участках тела.[6] В целом в развитие глаза вовлечено несколько тысяч генов, однако один-единственный «пусковой ген» («мастер-ген») осуществляет запуск всей этой генной сети. То, что этот ген сохранил свою функцию у столь далёких групп, как насекомые и позвоночные, может свидетельствовать об общем происхождении глаз всех двустороннесимметричных животных.

Позвоночные[править | править код]

Глазные бокалы позвоночных формируются как выросты промежуточного мозга, а первичный центр обработки зрительной информации находится в среднем мозге.

Млекопитающие[править | править код]

Предполагается, что в течение мезозойского периода ранние млекопитающие занимали подчинённое по отношению к «царствующим рептилиям» (особенно динозаврам, преимущественно занимавшим экологические ниши крупных хищников и травоядных) положение, имели мелкие размеры и сумеречный образ жизни. В таких условиях зрение для ориентации в пространстве становится второстепенным по отношению к обонянию и слуху. Химические чувства, которые и сейчас остаются для нас эмоционально окрашенными, обслуживаются передним мозгом и лимбической системой. Предполагается, что передний мозг в этих условиях приобретает большее значение. Когда «царствующие» рептилии исчезли в конце мезозоя, более широкие эволюционные возможности открылись для «угнетённых» млекопитающих. Они заселили все возможные экологические ниши освободившегося мира, зрение для некоторых отрядов снова стало наиболее важным из всех чувств. Однако формирующиеся заново зрительные пути направились к наиболее важной части мозга — переднему мозгу, расширяющемуся и формирующему характерные для млекопитающих крупные полушария. Ретино-тектальный путь остается пережитком старого зрительного пути, а ретино-геникуло-стриарный путь быстро становится наиболее важным путём передачи зрительной информации в мозг.

Зрительная система у разных таксономических групп[править | править код]

Беспозвоночные[править | править код]

У беспозвоночных встречаются очень разнообразные по типу строения и зрительным возможностям глаза и глазки — одноклеточные и многоклеточные, прямые и обращённые (инвертированные), паренхимные и эпителиальные, простые и сложные.

У членистоногих часто присутствует несколько простых глаз (иногда непарный простой глазок — например, науплиальный глаз ракообразных) или пара сложных фасеточных глаз. Среди членистоногих некоторые виды имеют и простые, и сложные глаза: так, у ос два сложных глаза и три простых глаза (глазка). У скорпионов 3—6 пар глаз (1 пара — главные, или медиальные, остальные — боковые), у щитня — 3. В эволюции фасеточные глаза произошли путём слияния простых глазков. Близкие по строению к простому глазу, глаза мечехвостов и скорпионов, видимо, возникли из сложных глаз трилобитообразных предков путём слияния их элементов (Беклемишев, 1964).

Простейшие[править | править код]

Некоторые простейшие имеют слабодифференцированные органоиды светового восприятия (например, стигма у эвглены зелёной).

Насекомые[править | править код]

Глаза насекомых имеют фасеточное строение. Разные виды по-разному воспринимают цвета, но в целом большинство насекомых хорошо различают не только лучи спектра, видимые человеком, но и ближний ультрафиолет. Это зависит, помимо генетических факторов (строение рецепторов), и от меньшего поглощения УФ-света — из-за меньшего его пути в оптической системе глаза. Например, пчёлы видят ультрафиолетовый рисунок на цветке.

Позвоночные[править | править код]

Зрительная система рептилий, птиц и некоторых рыб[править | править код]

Установлено, что рептилии, птицы и некоторые рыбы имеют более широкую область ощущаемого оптического излучения. Они воспринимают ближний ультрафиолет (300—380 нм), синюю, зелёную и красную часть спектра. У некоторых земноводных, например, гребенчатого тритона, как показал Р. Маттей в 1925 году, зрение способно восстанавливаться после перерезания зрительного нерва[7].

Зрительный аппарат птиц обладает особенностями, не сохранившимися в зрении человека. Так, в рецепторах птиц имеются микросферы, содержащие липиды и каротиноиды. Считается, что эти микросферы — бесцветные, а также окрашенные в жёлтый или оранжевый цвет — выполняют функцию специфических светофильтров, формирующих «кривую видности».

Читайте также:  Строение глаза человека схема сетчатка

У многих птиц их бинокулярное зрение из-за специфического расположения глаз не даёт такого большого поля стереоскопического зрения, как у человека.

Зрение млекопитающих[править | править код]

Мутация, некогда реализованная у одного из прапредков млекопитающих и закрепившаяся во всём классе, сократила число видов цветовых рецепторов колбочек до двух. Полагают, что предки млекопитающих — мелкие грызуны — вели ночной образ жизни и компенсировали эту потерю значительным развитием сумеречного зрения (с помощью рецепторов — палочек).

Позже, однако, у приматов (в том числе человека) другая мутация вызвала появление третьего типа колбочек — цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.

Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками.
У человека и позвоночных имеется по два глаза, расположенных в глазных впадинах черепа.

Стереоскопическое зрение[править | править код]

У многих видов, образ жизни которых требует хорошей оценки расстояния до объекта, глаза смотрят скорее вперёд, нежели в стороны. Так, у горных баранов, леопардов, обезьян обеспечивается лучшее стереоскопическое зрение, которое помогает оценивать расстояние перед прыжком. Человек также имеет хорошее стереоскопическое зрение (см. ниже, раздел Бинокулярное и стереоскопическое зрение).

Альтернативный механизм оценки расстояния до объекта реализован у некоторых птиц, глаза которых расположены по разным сторонам головы, а поле объёмного зрения невелико. Так, куры совершают постоянные колебательные движения головой, при этом изображение на сетчатке быстро смещается, обратно пропорционально расстоянию до объекта. Мозг обрабатывает сигнал, что позволяет поймать мелкую добычу клювом с высокой точностью.

Глаза каждого человека внешне кажутся идентичными, но всё же функционально несколько различны, поэтому выделяют ведущий и ведомый глаз.
Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20—30 см) на отдалённый предмет, а затем, не смещая голову, поочерёдно закрыть правый и левый глаз, то для ведущего глаза изображение не сместится.

Физиология зрения человека[править | править код]

Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук — оптики, психологии, физиологии, химии.

Бинокулярное зрение у человека, как и у других млекопитающих, а также птиц и рыб, обеспечивается наличием двух глаз, информация от которых обрабатывается сначала раздельно и параллельно, а затем синтезируется в мозгу в зрительный образ. У далёких филогенетических предшественников человека глаза были расположены латерально, их зрительные поля не перекрывались и каждый глаз был связан только с противоположным полушарием мозга — контралатерально. В процессе эволюции у некоторых позвоночных, в том числе и у предков человека в связи с приобретением стереоскопического зрения, глаза переместились вперёд. Это привело к перекрытию левого и правого зрительных полей и к появлению новых ипсилатеральных связей: левый глаз — левое полушарие, правый глаз — правое. Таким образом появилась возможность иметь в одном месте зрительную информацию от левого и правого глаза, для их сопоставления и измерения глубины.

Ипсилатеральные связи эволюционно более молодые, чем контралатеральные. В ходе развития стереоскопичности зрения по мере перехода от животных с латерально направленными зрительными осями к животным с фронтальной ориентацией глаз доля ипси-волокон растёт (таблица)[8].

Количество неперекрёстных и перекрёстных волокон в зрительном нерве у ряда млекопитающих

Вид животногоОтношение количества неперекрёстных к числу перекрёстных волокон
Овца1:9
Лошадь1:8
Собака1:4,5
Опоссум1:4
Морская свинка1:3
Кошка1:3
Хорёк1:3
Макака1:1,5
Человек1:2; 1:1,5; 1:1[9]

Большинство особенностей бинокулярного зрения человека обусловлено характеристиками нейронов и нейронных связей. Методами нейрофизиологии показано, что декодировать глубину изображения, заданную на сетчатках набором диспаратностей, начинают бинокулярные нейроны первичной зрительной коры. Было показано, что самое важное требование для осуществления стереоскопического зрения — это различия в образах на сетчатке двух глаз.[10]

Благодаря тому, что поля зрения обоих глаз человека и высших приматов в значительной мере пересекаются, человек способен лучше, чем многие млекопитающие, определять внешний вид и расстояние (этому способствует также механизм аккомодации) до близких предметов в основном за счёт эффекта стереоскопичности зрения. Стереоскопический эффект сохраняется на дистанции приблизительно 0,1—100 м. У человека пространственно-зрительные способности и объёмное воображение тесно связаны со стереоскопией и ипси-связями.

Примечания[править | править код]

  1. ↑ Ханц Фениш. Карманный атлас анатомии человека. Минск: Вышэйшая школа, 1996 г.
  2. ↑ Сапин М. Р., Брыксина З. Г. — Анатомия человека //Просвещение, 1995 г.
  3. ↑ Гистология, цитология и эмбриология, 2004, с. 362.
  4. ↑ Слёзный аппарат глаза. Дата обращения 30 марта 2019. Архивировано 8 августа 2018 года.
  5. Беклемишев В. Н. Основы сравнительной анатомии беспозвоночных. Т. 2. — М., Наука, 1964. — с. 143—159.
  6. ↑ glava 14.1.p65 Архивировано 19 апреля 2009 года.
  7. R. Matthey. Récupération de la vue après résection des nerfs optiques chez le Triton (фр.) // Comptes rendus des séances de la Société de biologie et de ses filiales : magazine. — 1925. — Vol. 93. — P. 904—906.
  8. Блинков С. М., Глезер И. И. Мозг человека в цифрах и таблицах. — Л., 1964. — 180 с.
  9. ↑ Данные разных авторов.
  10. ↑ Bishop P. O. (1981) Neural mechanisms for binocular depth discrimination. In: Advances in Physiological Sciences. Sensory Functions (Eds. Grastian E., Molnar P.), v. 16, p. 441—449.

См. также[править | править код]

  • Зрение человека
  • Рецептивное поле
  • Сенсорная система
  • Человек разумный

Литература[править | править код]

  • Зрение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • А. Нагель «Аномалии, рефракции и аккомодации глаза» (перевод с немецкого доктора В. Добровольского, 1881);
  • Т. Лонгмор, «Руководство к исследованию зрения для военных врачей» (переработано доктором медицины Лаврентьевым, 1894);
  • А. Imbert, «Les anomalies de la vision» (1889);
  • Дж. Грегг, «Опыты со зрением» (1970).
  • Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. — М.: Медицина, 2004. — 768 с. — ISBN 5-225-04858-7.

Ссылки[править | править код]

  • Зрительный аппарат человека
  • Болезни глаз
  • Зрительная система человека

Источник