Ганглиозная клетка сетчатки это

Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки (биполярных, горизонтальных, амакриновых). В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну (пятно Мариотта), собираются в зрительный нерв и направляются в мозг. Аксоны ганглионарных клеток не миелинизированы при прохождении сетчатки, чтобы не препятствовать прохождению света. Далее они покрыты миелиновой оболочкой.
Ганглионарные клетки завершают «трёхнейронную рецепторно-проводящую систему сетчатки»: фоторецептор — биполярный нейрон — ганглионарная клетка.

Функции ганглионарных клеток[править | править код]

Клетки сетчатки связаны между собой сложной сетью возбуждающих, подавляющих и двунаправленных сигнальных связей. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы — биполяры — ганглионарные клетки), так и по латеральным путям (фоторецепторы — горизонтальные клетки — биполяры — амакриновые клетки — ганглионарные клетки).

Рецептивные поля[править | править код]

На одну ганглионарную клетку приходится от одного до сотни биполярных нейронов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от нескольких до нескольких тысяч фоторецепторов. Каждая ганглионарная клетка суммирует сигналы от большого числа фоторецепторов, что повышает световую чувствительность, но уменьшает разрешение. Фоторецепторы, соединенные с одной ганглионарной клеткой, образуют её рецептивное поле. Рецептивные поля ганглионарных клеток подразделяются на простые и сложные. Простые поля — имеют концентрическую структуру, подобно полям биполярных нейронов. Сложные — разделяются на несколько различных функциональных зон. Рецептивные поля могут перестраиваться, адаптируясь к уровню освещённости и характеристикам световых стимулов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от единиц до десятков тысяч фоторецепторов (палочек и колбочек). В свою очередь, один фоторецептор через биполярные нейроны может быть связан с десятками ганглионарных клеток. В среднем на 100 фоторецепторных клеток приходится одна ганглионарная (т.е., их от 1.2 до 1.5 млн). Чем ближе к центральной ямке глаза, тем меньше фоторецепторов приходится на одну ганглионарную клетку. Поэтому у людей слабое периферическое зрение. В районе центральной ямки, наоборот, высокое разрешение, но менее высокая светочувствительность, поскольку здесь каждый фоторецептор (колбочка) соединен с одной биполярной (карликовой) клеткой, которая в свою очередь соединена лишь с одной ганглионарной.

Типы ганглионарных клеток[править | править код]

Существует всего 18 типов ганглионарных клеток сетчатки.
Большинство относится к трем типам:

1. Парвоганглионарные клетки — карликовые клетки (около 80% от числа всех ганглионарных клеток сетчатки), имеющие средний размер тела и маленькое дерево дендритов, входят в карликовый путь (чувствительный путь, ведущий от глаза к четверохолмию) и связаны с парвоцеллюлярными (мелкоклеточными) слоями латеральных коленчатых тел. С этими клетками связывают высокую остроту зрения и цветовое зрение.

2. Магноклетки — (около 10%) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими телами и большим разветвлением дендритов, которые проецируются в крупноклеточные слои латеральных коленчатых тел. Отвечают за востриятие движущихся объектов. Имеют большие рецепторные поля.

3. Кониоцеллюлярные клетки очень мелкие, составляют от 8 до 10% всех ганглионарных клеток сетчатки. Получают сигналы от среднего количества фоторецепторов. Имеют очень большие рецептивные поля. Всегда ON для колбочек синего цвета и OFF для красного и зеленого.

Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отвечают на световое раздражение деполяризацией или гиперполяризацией соответственно. Дендриты клеток с on-центром разветвляются в подуровне а (пигментном эпителии?), с off-центром в подуровне G (ганглионарном слое?) внутреннего сетчатого слоя. Цветовой канал связан с красным, зеленым и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ганглионарных on/off-клеток относится к карликовому пути, то синий тип не относится к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя

Светочувствительные ганглионарные клетки[править | править код]

В 1991 году были открыты особые светочувствительные ганглионарные клетки типа ipRGC (intrinsically photosensitive retinal ganglion cells), или mRGC (melanopsin-containing retinal ganglion cells). Они, в отличие от ранее известных ганглионарных клеток, содержат светочувствительный пигмент меланопсин, отличающийся от других фоточувствительных пигментов глаза: родопсина палочек и йодопсина колбочек. И этим они отличаются от других ганглионарных клеток, находящихся в сетчатке глаза, которые не умеют реагировать непосредственно на свет.
Эти светочувствительные ганглионарные клетки — новый, третий тип фоторецепторов сетчатки глаза, помимо известных уже в течение 200 лет палочек и колбочек. Они напрямую возбуждаются под действием света даже при блокировании «классических» фоторецепторов глаза — палочек и колбочек.
Нервные пути от этих ганглиозных (ганглионарных) клеток ведут порождённое в них светом возбуждение от сетчатки к гипоталамусу тремя разными путями, обеспечивая световое управление циркадными ритмами, а также по отдельному нервному пути обеспечивают реакцию сужения зрачка на свет.

Литература[править | править код]

  • Ноздрачёв А. Д., Баженов Ю. И., Баранникова И. А., Батуев А. С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А. Д. Ноздрачёва. СПб.: Лань, 2001. 1088 с.

Ссылки[править | править код]

  • Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System
  • Photosensitive ganglion cells
  • Vision beyond image formation: The role of melanopsin cells in regulating mammalian physiology
  • Blind Mice Can «See» Thanks To Special Retinal Cells
  • Фоторецепторы и фоторецепция

[1]
[2]
[3]
[4]
[5]

Источник

Амакриновые клетки. Ганглиозные клетки сетчатки

В настоящее время морфологическими или гистохимическими методами идентифицированы около 30 типов амакриновых клеток. Функции некоторых из них охарактеризованы, и все они отличаются друг от друга. Один тип амакриновых клеток является частью прямого пути палочкового зрения, т.е. от палочки к биполярным клеткам, затем к амакриновым и, наконец, к ганглиозным клеткам.

Амакриновые клетки другого типа активно реагируют в начале непрерывного зрительного сигнала, но ответ быстро исчезает. Некоторые амакриновые клетки, наоборот, мощно реагируют на выключение зрительного сигнала, но их ответ также быстро прекращается.

Амакриновые клетки еще одного типа реагируют и на включение, и на выключение света, просто сигнализируя об изменении освещения, независимо от его направления. Есть амакриновые клетки, реагирующие на движение пятна света по сетчатке в определенном направлении; о таких клетках говорят, что они чувствительны к направлению.

В известном смысле большинство амакриновых клеток являются вставочными нейронами, которые помогают анализировать зрительные сигналы, прежде чем они покинут сетчатку.

амакриновые клетки сетчатки

Ганглиозные клетки

Каждая сетчатка содержит около 100 млн палочек и 3 млн колбочек; однако количество ганглиозных клеток — лишь около 1,6 млн. Таким образом, в среднем 60 палочек и 2 колбочки конвергируют на каждую ганглиозную клетку и волокно зрительного нерва, идущее от ганглиозной клетки к мозгу.

Однако существуют большие различия между периферической и центральной областями сетчатки. По мере приближения к ямке все меньше палочек и колбочек конвергируют на каждое зрительное волокно; кроме того, и палочки, и колбочки становятся тоньше. Эти эффекты постепенно увеличивают остроту зрения в центральной сетчатке. В самом центре — в области центральной ямки — есть только тонкие колбочки (примерно 35000) и совсем нет палочек. К тому же, как показано справа на рисунке, количество волокон зрительного нерва, выходящих из этой части сетчатки, почти равно числу колбочек. Это объясняет высокую степень остроты зрения в центральной сетчатке по сравнению с гораздо меньшей остротой на периферии.

Читайте также:  Заболевание сетчатки глаза сосудистого происхождения

Другим различием между периферией и центром сетчатки является гораздо более высокая чувствительность периферической сетчатки к слабому свету. Отчасти это объясняется тем, что чувствительность палочек в 30-300 раз выше, чем колбочек. Однако эффект значительно усиливается в связи с конвергенцией примерно 200 палочек на одну ганглиозную клетку в периферических областях сетчатки, поэтому сигналы от палочек суммируются, дополнительно усиливая интенсивность стимуляции периферических ганглиозных клеток и исходящих от них волокон зрительных нервов.

Различают три группы ганглиозных клеток, которые обозначают как W-, Х- и Y-клетки. Каждая группа выполняет свою функцию.

Передача палочкового зрения W-клетками. W-клетки составляют примерно 40% общего числа ганглиозных клеток. Они маленькие (диаметром около 10 мкм) и передают сигналы по соответствующим им волокнам зрительного нерва с низкой скоростью, равной около 8 м/сек. Эти ганглиозные клетки возбуждаются в основном от палочек, передающих к ним сигналы через малые биполярные и амакриновые клетки. W-клетки имеют широкие рецептивные поля в сетчатке, т.к. их дендриты широко распространяются во внутреннем слое сетчатки, получая сигналы от обширных областей.

На основании гистологических и физиологических экспериментов показано, что W-клетки, по-видимому, особенно чувствительны к восприятию направленного движения в поле зрения и очень важны для нашего грубого палочкового зрения в условиях темноты.

Передача зрительного образа и цвета Х-клетками. Подавляющее большинство ганглиозных клеток (55%) являются Х-клетками. Они имеют средний диаметр (в пределах от 10 до 15 мкм) и передают сигналы по своим волокнам зрительного нерва со скоростью около 14 м/сек.

Рецептивные поля Х-клеток небольшие, поскольку их дендриты не имеют широкого распространения в сетчатке. В связи с этим сигналы Х-клеток отражают дискретные участки сетчатки. Следовательно, в основном через Х-клетки передаются тонкие детали зрительного образа. Кроме того, поскольку каждая Х-клетка получает сигналы, по крайней мере, от одной колбочки, эти клетки, вероятно, отвечают за все цветовое зрение.

Функция Y-клеток — передача информации о мгновенных изменениях в зрительном образе. Y-клетки — самые большие из всех ганглиозных клеток (диаметром до 35 мкм). Они проводят сигналы к мозгу со скоростью 50 м/сек и выше. Среди ганглиозных клеток они самые малочисленные (около 5% общего количества) и имеют разветвленные дендриты, следовательно, собирают сигналы от обширных областей сетчатки.

Как многие из амакриновых клеток, Y-клетки реагируют на быстрые изменения в зрительном образе (быстрые движения или быстрые изменения освещения), посылая импульсные разряды, длительность которых составляет лишь доли секунды. Эти ганглиозные клетки, вероятно, почти немедленно информируют центральную нервную систему о появлении любого нового зрительного явления в поле зрения, но без высокой точности его локализации, обеспечивая лишь соответствующие сигналы, заставляющие глаза двигаться по направлению к возбуждающему объекту.

— Также рекомендуем «Возбуждение ганглиозных клеток. Роль латерального торможения в сетчатке»

Оглавление темы «Физиология сетчатки. Проводящие зрительные пути»:

1. Каскад усиления в сетчатке. Фотохимия цветового зрения

2. Световая и темновая адаптация. Механизмы световой и темновой адаптации

3. Острота зрения. Определение расстояния до объекта глазами

4. Слепота на отдельные цвета. Функция нейронов сетчатки

5. Зрительный путь от колбочек. Нейромедиаторы нейронов сетчатки

6. Функция горизонтальных клеток сетчатки. Возбуждение и торможение биполярных клеток

7. Амакриновые клетки. Ганглиозные клетки сетчатки

8. Возбуждение ганглиозных клеток. Роль латерального торможения в сетчатке

9. Зрительные пути. Дорсолатеральное коленчатое ядро таламуса

10. Зрительная кора. Строение первичной зрительной коры

Источник

Оглавление темы «Рецепторный потенциал палочек и колбочек. Рецептивные поля клеток сетчатки. Проводящие пути и центры зрительной системы. Зрительное восприятие.»:

1. Рецепторный потенциал палочек и колбочек. Ток ионов через мембрану фоторецептора в темноте и на свету.

2. Адаптация фоторецепторов к изменениям освещенности. Световая адаптация. Десенситизация. Темновая адаптация.

3. Рецептивные поля клеток сетчатки. Прямой путь передачи сигналов от фоторецепторов к ганглиозной клетке. Непрямой путь передачи сигналов.

4. Рецептивные поля с оn-центрами и off-центрами. On-нейроны. Off-нейроны. Ганглиозная клетка on-типа. Ганглиозная клетка off-типа.

5. Рецептивные поля цветового восприятия. Восприятие цвета. Первичные цвета. Монохромазия. Дихромазия. Трихромазия.

6. М- и Р-типы ганглиозных клеток сетчатки. Магноцеллюлярные (М-клетки) клетки. Парвоцеллюлярные (Р-клетки) ганглиозные клетки сетчатки.

7. Проводящие пути и центры зрительной системы. Зрительный нерв. Зрительные тракты. Глазодвигательный рефлекс.

8. Латеральное коленчатое тело. Функциональная организация латерального коленчатого тела. Рецептивные поля латерального коленчатого тела.

9. Переработка зрительной сенсорной информации в коре. Проекционная зрительная кора. Световая грань. Комплексные нейроны. Двойные противоцветные клетки.

10. Зрительное восприятие. Магноцеллюлярный путь. Парвоцеллюлярный путь. Восприятие формы, цвета.

М- и Р-типы ганглиозных клеток сетчатки. Магноцеллюлярные (М-клетки) клетки. Парвоцеллюлярные (Р-клетки) ганглиозные клетки сетчатки.

Зрительное восприятие происходит в результате согласования друг с другом различных сведений о наблюдаемых объектах. Но на низших иерархических уровнях зрительной системы, начиная с сетчатки глаза, осуществляется независимая переработка информации о форме и глубине объекта, о его цвете и его движении. Паралелльная переработка информации об этих качествах зрительных объектов обеспечивается специализацией ганглиозных клеток сетчатки, которые подразделяются на магноцеллюлярные (М-клетки) и парвоцеллюлярные (Р-клетки).

Рецептивные поля клеток сетчатки. Прямой путь передачи сигналов от фоторецепторов к ганглиозной клетке.

В большом рецептивном поле относительно крупных М-клеток, состоящем преимущественно из палочек, может проецироваться цельное изображение крупных объектов: М-клетки регистрируют грубые признаки таких объектов и их движение в зрительном поле, отвечая на раздражение всего рецептивного поля непродолжительной импульсной активностью. Клетки Р-типа имеют малые рецептивные поля, состоящие преимущественно из колбочек и предназначенные для восприятия мелких деталей формы объекта или для восприятия цвета. Среди ганглиозных клеток каждого типа имеются как on-нейроны, так и off-нейроны, дающие наиболее сильный ответ на раздражение центра или периферии рецептивного поля. Существование М- и Р-типов ганглиозных клеток позволяет разделить информацию о разных качествах наблюдаемого объекта, которая перерабатывается независимо в параллельных путях зрительной системы: о тонких деталях объекта и о его цвете (пути начинаются от соответствующих рецептивных полей клеток Р-типа) и о движении объектов в зрительном поле (путь от клеток М-типа).

— Также рекомендуем «Проводящие пути и центры зрительной системы. Зрительный нерв. Зрительные тракты. Глазодвигательный рефлекс.»

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 июля 2019;
проверки требуют 3 правки.

Рецептивное поле (англ. receptive field) сенсорного нейрона — участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения этого нейрона.
Концепция рецептивных полей может быть применима ко всей нервной системе. Если множество сенсорных рецепторов образуют синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Например, рецептивное поле ганглионарной (ганглиозной) клетки сетчатки глаза представлено фоторецепторными клетками (англ.)русск. (палочками или колбочками), а группа ганглионарных клеток в свою очередь создаёт рецептивное поле для одного из нейронов мозга. В итоге к одному нейрону более высокого синаптического уровня сходятся импульсы от многих фоторецепторов; и этот процесс называется конвергенцией.

Читайте также:  Виды кровоизлияния сетчатки глаза

Слуховая система[править | править код]

В качестве рецептивных полей слуховой системы могут рассматриваться части слухового пространства (англ. auditory space) или диапазоны слуховых частот. Лишь немногие исследователи трактуют слуховые рецептивные поля как определённые участки сенсорного эпителия, например, группы волосковых клеток спирального органа улитки внутреннего уха млекопитающих.

Соматосенсорная система[править | править код]

Рецептивные поля соматосенсорной системы — это участки кожи или внутренних органов. Размеры рецептивных полей неодинаковы и зависят от типа механорецепторов.

Большое рецептивное поле нейрона позволяет отслеживать изменения на большей площади чувствительной поверхности, но обеспечивает меньшую разрешающую способность ощущения. Таким образом, пальцы, которые должны осязать тонкие детали, имеют множество плотно расположенных (до 500 на 1 см3) механорецепторов с маленькими рецептивными полями (около 10 мм2), тогда как спина, бёдра и голени имеют меньшее количество рецепторов, объединённых в большие рецептивные поля. Как правило, в центральной части большого рецептивного поля имеется одно «горячее пятно», стимуляция которого вызывает наиболее интенсивный ответ.

Нейроны коры головного мозга, связанные с тактильными ощущениями, имеют рецептивные поля на коже, размеры и расположение которых могут изменяться по мере накопления человеком индивидуального опыта или вследствие повреждения сенсорных (афферентных) нервных волокон. В основном эти нейроны имеют относительно большие рецептивные поля — гораздо большего размера, чем у нейронов спинномозгового узла (спинального ганглия). Тем не менее, благодаря особым механизмам возбуждения и торможения в рецептивных полях, улучшающим пространственное разрешение, эти кортикальные нейроны способны распознавать тонкие детали.

Зрительная система[править | править код]

Рецептивные поля зрительной системы можно считать частями зрительного пространства (англ. visual space). Например, в качестве рецептивного поля одной фоторецепторной клетки можно рассматривать конус, охватывающий все возможные направления, с которых эта клетка способна воспринимать свет. Его вершина находится в центре хрусталика, а основание — в бесконечности зрительного пространства. Но традиционно зрительные рецептивные поля изображаются на плоскости — как круги, квадраты, прямоугольники… Подобные изображения по сути являются сечениями конуса, отвечающего рецептивному полю одной специфической клетки, плоскостью, в которой исследователь предъявлял конкретный визуальный стимул. Рецептивные поля бинокулярных нейронов первичной зрительной коры (или стриарной области — поле Бродмана 17, зрительная зона V1) не уходят в оптическую бесконечность, а ограничены определённым расстоянием от точки, в которую направлен взгляд — «точки фиксации глаз» (См. зона Панума — англ. Panum’s area).

Рецептивные поля нейронов зачастую определяются как области сетчатки, освещение которых изменяет возбуждение конкретного нейрона. Для ганглионарных (ганглиозных) клеток сетчатки эта область включает все фоторецепторы — палочки или колбочки одного глаза, связанные с конкретной ганглионарной клеткой посредством синаптических контактов с биполярными, горизонтальными (англ.)русск. и амакринными (англ.)русск. (амакриновыми) клетками. Для бинокулярных нейронов зрительной коры рецептивные поля определяются как совокупность соответствующих областей сетчаток правого и левого глаза. Эти области могут быть закартированы по отдельности в каждой сетчатке (при закрывании другого глаза), но полностью связь каждой из областей с возбуждением исследуемого нейрона обнаруживается только в том случае, когда открыты оба глаза.

Хьюбел и Визель (например, Hubel, 1963) развили теорию о том, что рецептивные поля клеток каждого уровня зрительной системы формируются синаптическими соединениями с клетками более низкого иерархического уровня этой системы. В этом случае небольшие и просто устроенные рецептивные поля могут комбинироваться, формируя обширные и сложные рецептивные поля. Позднее нейробиологи усовершенствовали эту относительно простую концепцию, допустив, что нейроны низших уровней зрительной системы связаны обратными эфферентными связями с нейронами более высоких уровней.

В настоящее время составлены карты рецептивных полей для клеток всех уровней зрительной системы — от фоторецепторов и ганглионарных (ганглиозных) клеток сетчатки — до нейронов латерального (наружного) коленчатого тела, первичной и экстрастриарной зрительной коры. Исследования, основанные лишь на ощущениях, не могут дать полной картины для понимания феномена зрения, поэтому здесь, также как и при изучении мозга, должны применяться электрофизиологические методы — тем более, что в эмбриогенезе млекопитающих сетчатка возникает в процессе дальнейшей дифференциации латеральных выпячиваний промежуточного мозга (так называемых глазных пузырей).[1]

Ганглионарные клетки сетчатки[править | править код]

Ганглионарные (ганглиозные) клетки сетчатки
с on — и off — центрами отвечают диаметрально противоположным образом на освещение центра и периферии рецептивного поля.
Сильный ответ соответствует высокочастотному возбуждению, слабый — низкочастотному, отсутствие ответа — отсутствию активности.

Распознавание границ изображения (краёв, углов) рецептивными полями сетчатки — грубая компьютерная аппроксимация.
Размеры рецептивных полей увеличиваются от центра сетчатки к её периферии.
Визуальная информация от двух типов клеток (с on- и off- центрами) показана красным и зелёным цветом, соответственно.

Каждая ганглионарная (ганглиозная) клетка или оптическое нервное волокно (англ. optic nerve fiber) порождает рецептивное поле, расширяющееся по мере возрастания интенсивности освещения. Если размер поля максимален, то свет на его периферии интенсивнее, нежели в центре, отражая то, что некоторые синаптические пути предпочтительнее других.

Организация рецептивных полей ганглиозных клеток, составленных из входов многих палочек или колбочек, позволяет обнаруживать контраст, что используется для выявления краевых частей наблюдаемых объектов. Каждое рецептивное поле подразделяется на две части: центральный диск — «центр» и концентрическое кольцо — «периферию»; каждая из этих частей реагирует на свет противоположным образом. Так, если освещение центра рецептивного поля увеличивает возбуждение конкретной ганглиозной клетки с так называемым on-центром (см. далее), то воздействие света на периферию этого же поля оказывает тормозящее воздействие на эту ганглиозную клетку.

Существует два основных типа ганглиозных клеток: с «on-центром» и «off-центром». Клетка с on-центром возбуждается при освещении центра и тормозится при освещении периферии её рецептивного поля. Реакция на свет клетки с off-центром диаметрально противоположная. Кроме того, у млекопитающих имеются клетки промежуточного (on-off) типа, которым свойственна кратковременная реакция на освещение по on-типу и на затенение по off-типу.[2] Освещение центральной части рецептивного поля приводит к деполяризации и возрастанию возбуждения нейрона (например, ганглионарной клетки) с on-центром, освещение периферии рецептивного поля приводит к гиперполяризации (англ.)русск. и торможению этого нейрона, а одновременная световая стимуляция и центра, и периферии рецептивного поля вызывает слабую активацию (вследствие суммации эффектов, связанных с реакциями центральной и периферической частей рецептивного поля). Ганглионарная клетка (или другой нейрон) с off-центром возбуждается при световой стимуляции периферии и тормозится при освещении центра своего рецептивного поля (см. рисунок).[2]

Фоторецепторы, которые включены в состав рецептивных полей нескольких ганглиозных клеток, способны как возбуждать, так и тормозить постсинаптические нейроны (англ. postsynaptic neurons), поскольку они высвобождают нейротрансмиттер глутамат на своих синапсах, что может способствовать как деполяризации, так и гиперполяризации мембранного потенциала клетки, в зависимости от того, какие именно ионные каналы открываются нейротрансмиттером. Организация рецептивного поля по принципу центр-периферия позволяет ганглиозным клеткам передавать информацию не только о том, освещены ли фоторецепторные клетки, но также и о различиях в параметрах возбуждения подобных клеток, расположенных в центре и на периферии рецептивного поля. Последнее даёт возможность ганглиозным клеткам посылать нейронам более высоких синаптических уровней информацию о контрастности изображения.
Размер рецептивного поля влияет на пространственную частоту (англ. spatial frequency) визуальной информации: небольшие рецептивные поля активируются сигналами с высокими пространственными частотами и тонкой детализацией изображения; большие рецептивные поля — сигналами с низкими пространственными частотами и плохой детализацией.
Рецептивные поля ганглиозных клеток сетчатки передают информацию о дискретности распределения света, падающего на сетчатку, а это зачастую позволяет обнаруживать краевые части визуальных объектов. При адаптации к темноте инактивируется периферийная зона рецептивного поля, но его активная часть, а следовательно, площадь суммации сигналов и совокупная чувствительность, могут реально возрасти вследствие ослабления взаимного горизонтального торможения центра и периферии рецептивного поля.[3]

Читайте также:  Ангиопатия сетчатки у новорожденных что

Как правило, рецептивные поля лучше реагируют на движущиеся объекты — такие как светлое или тёмное пятно, пересекающее поле от центра к периферии (или в противоположном направлении), а также на контуры объектов — вследствие нарушения равномерности в распределении света по поверхности поля. Диаметр центральной части рецептивного поля ганглионарной клетки сетчатки совпадает с протяжённостью её дендритов, тогда как площадь периферии рецептивного поля определяется амакринными клетками, устанавливающими связь данной ганглионарной клетки со множеством биполярных клеток. Кроме того, амакринные клетки могут не допускать передачи сигналов в ганглионарную клетку от периферии её рецептивного поля, тем самым усиливая доминирование реакции центра рецептивного поля («включённый центр и выключенная периферия» — англ. “on-center, off-periphery”). Ганглионарная клетка сетчатки кролика возбуждается при движении светового пятна в «предпочитаемом» (англ. «preferred») направлении и не реагирует, если направление является противоположным («нулевым», англ. «null»).[4][5] Ганглиозные клетки, способные различать направление движения, найдены также в сетчатке кошки, земляной белки, голубя. Считается, что обнаруженные свойства рецептивных полей ганглиозных клеток связаны с особенностями сложных механизмов торможения, действующих в сетчатке.[6][7][8]

Латеральное коленчатое тело[править | править код]

На более высоких уровнях зрительной системы группы ганглионарных (ганглиозных) клеток формируют рецептивные поля нейронов подкоркового зрительного центра — латерального (наружного) коленчатого тела. Рецептивные поля напоминают таковые ганглионарных клеток, с антагонистической системой «центр-периферия»; здесь также имеются нейроны с on- или off- центрами (приблизительно в равном количестве).[9]

Зрительная кора больших полушарий[править | править код]

Рецептивные поля нейронов зрительной зоны коры крупнее по размерам и имеют большую избирательность по отношению к визуальным стимулам, нежели ганглиозные клетки сетчатки или нейроны латерального коленчатого тела. Хьюбел и Визель (например, Hubel, 1963) подразделили рецептивные поля корковых нейронов зрительной системы на «простые», «сложные» и «сверхсложные».[9]«Простые» рецептивные поля имеют удлинённую форму, к примеру, с центральной эллипсовидной зоной возбуждения и антагонистической зоной торможения по периферии эллипса. Либо они могут быть почти прямоугольными; при этом одна из длинных сторон прямоугольника является зоной возбуждения, а другая — антагонистической зоной торможения. Изображения, активирующие нейроны этих рецептивных полей, должны быть ориентированы определённым образом. Чтобы возбудить нейрон со «сложным» рецептивных полем, световому стимулу в виде полоски недостаточно быть правильно ориентированным — нужно ещё и двигаться, причём в строго определённом направлении. Для активации корковых нейронов со «сверхсложными» рецептивными полями зрительному стимулу в виде полоски необходимо обладать всеми вышеперечисленными свойствами, и к тому же длина этой полоски должна быть строго определённой.

Экстрастриарная зрительная кора[править | править код]

Экстрастриарная зрительная кора (поля Бродмана 18 и 19) находится за пределами первичной зрительной коры[2]. Здесь нейроны могут иметь очень большие рецептивные поля, и для их активации могут потребоваться очень непростые изображения. Например, рецептивные поля нейронов нижневисочной извилины (англ. inferotemporal cortex), пересекают среднюю линию зрительного пространства, и эти нейроны активируются такими сложными визуальными образами, как радиальная решётка или кисти рук. Также было обнаружено, что нервные клетки вентральной поверхности веретеновидной извилины (на границе между затылочной и височной долями), где находится так называемая «зона распознавания лиц» (англ.)русск., реагируют, в основном, на изображения лиц[10]. Это важное открытие было получено с помощью технологии функциональной магнитно-резонансной томографии. Позднее оно было подтверждено на уровне исследования нервных клеток[11]. Подобным способом проводятся поиски других специфических зон зрительной коры; например, имеются относительно недавние публикации, полагающие, что так называемая парагиппокампальная навигационная зона (англ. parahippocampal place area) может быть отчасти специализирована к распознаванию зданий. Кстати, в одном из последних исследований высказывается предположение, что «зона распознавания лиц» веретеновидной извилины, возможно, не только выполняет функцию, отражённую в её наименовании, но и вообще служит для различения отдельных частей целого.

См. также[править | править код]

  • Зрительная система
  • Нейрон
  • Рецептор
  • Сенсорная система
  • Синапс

Примечания[править | править код]

  1. Гилберт С. Биология развития: в 3-х т = S.F. Gilbert. Developmental Biology. — 1988 by Sinauer Assotiates. — М.: Мир, 1993. — Т. 1: Пер. с англ. — 228 с. — ISBN 5-03-001831-X (русск.).
  2. 1 2 3 Часть III. Общая и специальная сенсорная физиология // Физиология человека: в 3-х томах = Human Physiology. Ed. by R.F. Schmidt, G. Thews. 2nd, completely revised edition (translated from German by M.A. Biederman-Thorson) / под ред. Р. Шмидта и Г. Тевса. — изд-е 2-е, перераб. и дополн. — М.: Мир, 1996. — Т. 1. Пер. с англ. — С. 178—321. — 323 с. — 10 000 экз. — ISBN 5-03-002545-6.
  3. Островский М. А., Шевелев И. А. Глава 14. Сенсорные системы // Физиология человека. Учебник (В двух томах. Т. II) / под ред. В. М. Покровского, Г. Ф. Коротько. — М. — С. 201—259. — 368 с. — (Учеб. лит. для студентов мед. вузов). — 10 000 экз. — ISBN 5-225-02693-1.

  4. Barlow H. B., Hill R. M. Selective sensitivity to direction of motion in ganglion cells of the rabbit’s retina (англ.) // Science : journal. — 1963. — Vol. 139. — P. 412—414.
  5. ↑ «eye, human.» Encyclopædia Britannica. Encyclopaedia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2010.

  6. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit’s retina (англ.) // J Physiol (англ.)русск. : journal. — 1965. — June (vol. 178, no. 3). — P. 477—504. — PMID 5827909.

  7. Michael C. R. Receptive fields of directionally selective units in the optic nerve of the ground squirrel (англ.) // Science : journal. — 1966. — May (vol. 152, no. 725). — P. 1092—1095. — PMID 5931459.
  8. Тамар Г. Основы сенсорной физиологии = Tamar H. Principles of Sensory Physiology. — Charles & Thomas Publishers, Springfield Illinois USA, 1972 / Пер. с англ. Н. Ю. Алексеенко. — М.: Мир, 1976. — 521 с.
  9. 1 2 Шульговский В. В. Основы нейрофизиологии. — М.: Аспект Пресс, 2000. — 277 с. — 5 000 экз. — ISBN 5-7567-0134-6.

  10. Kanwisher N., McDermott J., Chun M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception (англ.) // J Neurosci (англ.)русск. : journal. — 1997. — June (vol. 17, no. 11). — P. 4302—4311. — PMID 9151747.

  11. Tsao D. Y., Freiwald W. A., Tootell R. B., Livingstone M. S. A cortical region consisting entirely of face-selective cells (англ.) // Science : journal. — 2006. — February (vol. 311, no. 5761). — P. 617—618. — PMID 16456083.

Внешние ссылки[править | править код]

  • Нейромодель RF-PSTH (симулирующая структуру рецептивного поля (РП) и выходной нейронный сигнал PSTH)

Источник