Влияние лазера на роговицу

Что будет, если лазерный луч попадет в глаз? Или несколько слов о безопасности при проведении лазерных процедур в косметологии

Это 50 лет назад лазер использовался только для удаления новообразований, и то – на лице и теле. С момента появления аппаратов с более тонкими настройками, омолаживающие и удаляющие татуировки процедуры стали затрагивать области бровей, наружных уголков глаза, ресничных краев века. Но ведь там же и глаз недалеко! Опасно это или нет? Что будет, если лазер все-таки попадет в глаз? Как исключить риски для пациента и для врача?

Лазеры бывают разные

Медицинские лазерные системы имеют 4 класса опасности:

  1. Класс 1 считается неспособным генерировать разрушающие уровни излучения во время работы. Он безопасен при любых условиях нормального использования невооруженным глазом или увеличительной оптикой. Эти системы освобождаются от любых мер контроля или других видов наблюдения. Пример – лазеры, используемые в диагностических лабораториях. Класс 1M считается неспособным производить опасные условия воздействия во время нормальной работы, если луч не рассматривается с помощью увеличительной оптики.
  2. Класс 2 – лазерные системы малой мощности; они излучают свет в видимой части спектра (400-700 нм) и считаются безопасными, поскольку механизмы защиты (наш мигательный рефлекс) обеспечивают защиту. Примером может служить гелий-неоновый лазер (лазерные указки).
    Класс 2M – излучает свет в видимой части спектра. Защита глаз в норме обеспечивается непроизвольным закрытием глаз при взгляде на них. Однако эти системы потенциально опасны при просмотре с помощью некоторых оптических устройств.
  3. Лазерные системы средней мощности класса 3. Они могут быть опасны при прямом взгляде или взгляде на зеркальное отражение луча. Не являются источниками рассеянного отражения и не пожароопасны. Примером лазера класса 3 является лазер Nd: YAG, используемый в офтальмологии.
    Существует 2 подкласса: 3R и 3B. Класс 3R. Может быть опасен при некоторых условиях прямого и зеркального отражения, если глаз должным образом сфокусирован и стабилен, при этом вероятность фактического повреждения мала. Класс 3B. Могут быть опасными в условиях прямого и зеркального отражения.
  4. Класс 4. Это – системы высокой мощности. Они являются наиболее опасными, могут быть источниками рассеянного отражения, пожароопасны. Также они могут образовывать опасные плазменные излучения. Это – косметологические лазеры: углекислотный, неодимовый, аргоновый, александритовый, импульсный лазер на красителе (PDL).

Далее мы будем говорить только о косметологических лазерах.

Принцип действия лазера

Длины волн лазерного излучения попадают в ультрафиолетовые, видимые и инфракрасные диапазоны электромагнитного спектра.

Почти все косметологические лазеры работают на принципе селективного фототермолиза. Это означает, что их энергия лазера поглощается определенным хромофором:

  • меланином – для диодного, александритового и рубинового лазера и лазера на красителях (PDL);
  • гемоглобином – для неодима в иттрий-алюминиевом гранате и PDL;
  • водой – для эрбиевого и углекислотного лазера, при сохранении окружающей ткани.

Чтобы лазер оказал нужное действие, должно быть выполнено три основных требования:

  1. Достаточная для определенной глубины проникновения длина волны.
  2. Длительность экспозиции (ширина лазерного импульса и его длительность), меньшая или равная тепловой релаксации (TRT) мишени.
  3. Достаточная энергия на единицу площади (флюенс), чтобы вызвать необратимое повреждение хромофора-мишени.

Важны также мощность, размер пятна и продолжительность действия лазера. Так, при большем размере пятна происходит меньшее рассеяние, но более глубокое проникновение ткани.

Хотя лазеры нацелены на определенные хромофоры, окружающий разброс и полученный тепловой эффект могут вызвать побочные эффекты. Термическое повреждение возникает, когда достаточная энергия поглощается подходящим хромофором с более высокой скоростью, чем результирующая теплота может рассеиваться. В то время как основные хромофоры ткани являются мишенью, другие структуры глаз, которые также богаты этими хромофорами, подвержены непреднамеренному повреждению. Ими может быть сетчатка, богатая гемоглобином и меланином, сосудистая оболочка, богатая меланином, роговицей и хрусталик, имеющие в составе много жидкости.

Особенности века и глаза

При проведении лазерных процедур в окружающей глаз области нужно помнить следующее:

  • Кожа век очень тонкая.
  • Глаз содержит несколько мишеней для различных лазерных лучей. Это меланин в эпителии сетчатки, пигмент радужной оболочки, а также вода, которая составляет большую часть глазного яблока.
  • Самая уязвимая часть глаза – сетчатка: лазерный луч 400-1400 нм длиной (а особенно 700-1400 нм) фокусируется прямо на ней с помощью выпуклостей хрусталика и роговицы. В итоге сетчатка получает в 105 раз больше излучения, чем роговица.
  • Есть такое понятие, как явление Белла: когда глаз закрыт, глазное яблоко естественным путем катится вверх. Таким образом, пигментированная радужка может войти в диапазон проникновения лазера и поглотить излучение.
  • На роговице болевые рецепторы расположены очень плотно. То есть даже незначительное ее тепловое повреждение приводит к сильной боли.

Светлоглазые пациенты особенно подвержены лазерным травмам, если воздействие проводится лазером, чья мишень – меланин. У них все излучение попадает сразу на сетчатку, не уменьшаясь при прохождении через эпителий радужной оболочки.

Как лазер повреждает структуры глаза

Лазерная травма глаза и возможная степень повреждения различна и зависит от типа лазера. Так, аппараты, работающие на основе титанил-фосфата калия (KTP) или красителей (PDL) имеют короткую длину. Они, в основном, поглощаются роговицей и приводят к фотокоагуляции, то есть фототермическому эффекту. В этом случае в ткани глаза генерируется достаточное количество тепла для денатурации белков. Температура сетчатки может возрастать от 40 до 60° С.

Лазеры, испускающие длинную волну – инфракрасные, диодные, Nd: YAG. Они проходят через роговицу, чтобы достичь хрусталика и сетчатки. Их эффект – фотомеханический, реже – явление фотокоагуляции. Фотомеханический эффект подразумевает, что в тканях генерируется взрывной акустический удар, который может привести к появлению фрагментов и даже к перфорации отдельных структур.

Например, клинически 1064 нм Nd: YAG-лазер, вызывающий большинство лазерных травм глаза, способен вызвать кровоизлияние в сетчатку, в стекловидное тело, а также рубцевание, образование преретинальных спаек и ретинопатию, когда излучение поглощается эпителием пигмента сетчатки, насыщенным меланином. Лазер Nd: YAG может привести к значительным повреждениям глаза и окружающей кожи по сравнению с более короткими лазерами на длине волны, поскольку он может проникать в более глубокие слои кожи.

Опасность длинноволновых лазеров (например, 755-795 нм александритового и Nd: YAG-лазер с длиной волны 1064 нм) в том, что их луч не виден для глаза. Это отличает их от более коротковолновых (например, KTP) лазеров.

Erbium: YAG-лазер с длиной волны 2940 нм – это еще один аблятивный лазер, который также может быть использован фракционно. Он более эффективно поглощается водой и коллагеном и вызывает меньшее тепловое повреждение, чем CO2-лазер. Осложнения этих лазеров включают в себя эритему, гипер- и гипопигментацию радужки, кожные инфекции и травму роговицы.

Лазеры могут повреждать различные части глаза, вызывая осложнения различной степени. Самые опасные повреждения – это:

  • бельмо – при повреждении роговицы;
  • катаракта – при лазерной травме хрусталика;
  • ретинопатия – при поражении сетчатки.

Травма роговицы редко вызывает значительное ухудшение зрения, если она ограничена эпителием роговицы.

В целом, большинство зарегистрированных лазерных травм все же имеют благоприятных прогноз. Тем не менее, у американских коллег травма от лазерной эпиляции периокулярных областей является одной из наиболее распространенных причин судебного разбирательства.

Клинические случаи

………………………………………………………………………………………………………
Влияние лазера на роговицуПолучить полный бесплатный доступ к публикации? Пожалуйста, войдите в учетную запись или зарегистрируйтесь. Это абсолютно бесплатно. Авторизоваться или Зарегистрироваться

Источник

Лазерные указки создавались как эффективный инструмент быстрого взаимодействия с аудиторией. С такой указкой удобно проводить лекции, демонстрировать презентации, акцентируя внимание на важных моментах. Мощность таких устройств не создает угрозы для окружающих, однако некоторые указки могут быть опасны для здоровья глаз.

В чем опасность лазера?

Влияние лазера на роговицу

Технологические новшества всегда с восторгом воспринимаются потребителями, они зачастую спешат воспользоваться приборами, действие которых непонятно и еще не изучено. Лазерные приборы и указки, действительно удобны для работы и учебы. Кроме того, такие указки охотно используют туристы в походах в качестве сигнального средства или для поджигания щепок костра и т.д., но даже маломощное излучение лазера может нанести вред глазам при длительном воздействии.

Об опасности лазера должны всегда помнить те, кто его использует: ни при каких условиях не стоит направлять его лучи в глаза.

Попадание лазера в глаза грозит болезненными, ослепляющими травмами. Лучи могут вызывать ожоги глаз и роговицы, а такие термические повреждения чреваты кровоизлияниями в стекловидное тело из-за повреждения кровеносных сосудов. Болезненное состояние при повреждении от лазера длится несколько дней, у человека возникают неприятные реакции на свет, боли, сухость глаз.

Читайте также:  Помутнение роговицы глаза у детей

Чем лазерные приборы и указки опасны для зрения

Не все лазерные указки безопасны, поэтому пользоваться можно только продукцией, которая получила соответствующую сертификацию. К сожалению, не понимая всей опасности несертифицированных изделий, люди продолжают ими пользоваться, забывая изучить важные характеристики.
Мощные лучи указки лазерной, действие которой может достигать и нескольких километров, обладают поражающими свойствами. Это значит, что лучи, попадая в глаза человека, напрямую или уже будучи отраженными способны нанести серьезный вред здоровью глаз.

Влияние лазера на роговицу

Почему нельзя светить лазером в глаза:

  • возможна временная потеря остроты зрения даже при непродолжительном воздействии — яркий свет влияет на резкое сокращение зрачков, из-за чего перед глазами могут появиться неприятные оптические эффекты в виде черных точек, а зрение становится неясным и туманным;
  • лазерное воздействие вызывает повышенное слезотечение, головные боли, жжения и рези в глазах, покраснение сосудов;
  • при длительном воздействии на глаза мощной лазерной указки возможен ожог роговицы и сетчатки.

Черные точки, «мушки» перед глазами, появляются из-за того, что при ожоге отдельные сегменты поврежденных тканей отделяются от сетчатки и плавают в стекловидном теле глаза.

Ухудшение зрения наступает не из-за самого ожога, а из-за последствий кровоизлияния, поэтому очень важно в первые часы после травмы отвести кровь от участка, подвергшегося термическому воздействию.

Если Вы чувствуете болезненную симптоматику после того, как Ваши глаза подверглись воздействию лазера, срочно обращайтесь к врачу, так как последствия травмы могут привести к частичной или полной потере зрения.

Как можно определить степень опасности лазера

Лазерный луч обладает высокой проникающей способностью, поэтому указки даже с самой малой мощностью могут представлять угрозу. Нужно помнить, что лучи опасны не только прямым попаданием. Отражаясь от гладких поверхностей, они также способны нанести сильные ожоги.

Влияние лазера на роговицу

Как определить степень опасности лазера? Обычные лазерные указки, разрешенные к продаже и сертифицированные в стране, имеют мощность 1-5 мВт. Они относятся к классу опасности 2-3а, могут нанести вред при длительном воздействии на глаза. Абсолютно безопасными считаются лазеры 1-го класса, которые есть, например, в компьютерных мышках. Изделия, более 5 мВт, которым присвоен класс опасности 3а-3b, опасны при длительном и при краткосрочном воздействии на глаза. Лазеры класса 3b не рассчитаны на массовое потребление, поэтому не должны попадать на рынок сбыта. К четвертому классу относятся режущие типы лазеров высокой мощности, которые используются на различных производствах.

Использование несертифицированных лазерных указок наносит вред глазам

Помните, что абсолютно все лазерные указки небезопасны. Лучи не должны попадать в глаза, особенно если это лучи мощного прибора. Если контакт глаз с лазером все же произошел и отмечается стойкое болезненное состояние, необходимо обратиться в клинику для полного офтальмологического обследования.
Без использования специального оборудования невозможно определить, есть ли ожог сетчатки, роговицы и насколько может быть опасной полученная травма. Обычно, если повреждения незначительные, болезненные ощущения проходят в течение одного-двух часов. Если боли не проходят, то, скорее всего, получены серьезные повреждения.

Влияние лазера на роговицу

Помощь при ожоге сетчатки и роговицы:

  • перед посещением врача, если присутствуют сильные болевые ощущения, можно принять обезболивающие препараты;
  • врача лучше вызвать на дом, если отмечается не только болезненная симптоматика глаз, но и значительно снизилась острота зрения, ощущается общее недомогание;
  • до приезда специалиста больной должен находиться в горизонтальном положении, в покое;
  • план лечения составляется индивидуально, в зависимости от особенностей и площади поражения — действие назначенных препаратов (капель, антибактериальных мазей, гелей от ожогов), будет направлено на улучшение регенерации тканей, снятие отеков и воспаления;
  • как снять отеки, подскажет специалист — в некоторых случаях могут быть рекомендованы отвары ромашки и календулы.

У лазерного излучения мощное воздействие. Хрусталик глаза — это наша естественная линза, она просто фокусирует всю лазерную энергию на сетчатку. Поэтому при прямом воздействии на глаза поражается в первую очередь сетчатка, что чрезвычайно опасно для зрения человека. На сетчатке проецируются изображения, она участвует в процессах первичной обработки информации, отвечает за цветное, дневное и ночное зрение человека.

Любые изменения сетчатки не должны оставаться без внимания, так как без должной терапии они приведут к опасным последствиям, вплоть до полной потери зрения.

Влияние лазера на роговицу

Источник

Что же такое LASIC? Давайте посмотрим, как эволюционировали методы лазерной коррекции зрения. Мы посмотрим, какие из них применяются сейчас и какие недостатки и риски содержат.

История

Академик Святослав Фёдоров осматривает пациентку

Первые современные операции коррекции зрения  стал проводить выдающийся советский хирург академик Святослав Фёдоров, который предложил точечно нагревать роговицу глаза, пока она не деформируется и изменит свою кривизну.
Поскольку через некоторое время эффект изменения кривизны роговицы пропадал, одновременно с японским офтальмологом Сато, он перешёл к созданию надрезов на роговице. Эти самые надрезы фактически и положили начало современным лазерным операциям.

Сато поначалу делал насечки изнутри наверх, то есть получал доступ к внутренней (нижней) части роговицы глаза и резал через эндотелий — нижний слой роговицы, в результате чего, роговицы мутнели.

Академик С.Н. Фёдоров

В 1972 году академик С. Н. Фёдоров опубликовал научную работу, где описал методику операции и механику различных разрезов. До этого момента в сфере операций на глазу царила случайность – каждый работал, полагаясь только на свой опыт и эксперименты. Диагностика делалась вручную, а глубина реза – интуитивно. Академик Фёдоров назвал операцию радиальной кератотомией (РКТ). Она приобрела популярность в СССР и США, а также в Латинской Америке. Скоро появилась версия Линдстрома — так называемая мини-РКТ, чуть менее инвазивная.

В СССР и США её начали делать её массово. В одном только СССР было сделано около миллиона подобных операций. В Западной Европе она почти не производилась по причине значительно более высокого консерватизма медицины.

Сама технология нанесения насечек менялась довольно незначительно, менялись только инструменты. Они стали чуть точнее – металлические скальпели сменили алмазные.

Через 10 лет, когда набрался достаточный клинический опыт, выяснилось что РКТ работает, но со временем приводит к дальнозоркости.

Первое поколение лазеров

Лазеры начали производить массово в 90-х годах прошлого века, так как область их применения стремительно расширялась. Тогда и появился первый эксимерный лазер.
Эксимерные лазеры — один из самых интересных видов лазеров. Благодаря малой длине волны (от 126 нм до 558 нм), излучение лазера может быть сфокусировано в пятно очень маленького размера.

В 1985 году доктор Маргарет Макдональд, преподаватель кафедры офтальмологии в Луизианском университете, первой выполнила операцию, получившую название фоторефрактивной кератэктомии (ФРК). В ходе вмешательства, у пациента убрали часть роговицы. В ее центральной зоне, выпарили больше ткани, чем по краям. Получилось, что образованная роговицей линза, поменяла оптические свойства.

Уплощение роговицы после методом эксимер-лазерного воздействия

Читайте также:  Кросслинкинг роговицы после операции

Насущной проблемой ФРК в то время, была рабочая зона лазера, которая составляла примерно 4 мм. У здорового человека зрачок в темноте способен раскрываться до 6–8 мм, то есть кольцо, образованное резом, оказывалось точно напротив зрачка. Это создавало серьезные гало-эффекты – помехи от любых источников света, возникавшие ночью. Иными словами, в ночное время пациенты оказывались практически беспомощными, даже фары встречной машины лишали людей способности ориентироваться.

Принцип ФРК

Операции ФРК не сильно изменились и сегодня, хотя выполняются на более современных устройствах. К лазерной коррекции зрения данной методикой до сих пор существуют свои показания, несмотря на то, что при ее проведении роговица глаза становится тонкой и ослабленной.
Радиальная коррекция работает так, что роговица теряет один из своих слоёв – боуменову мембрану, ведь из неё выпаривается большая часть часть коллагеновых волокон.

Чем опасен ФРК (трансФРК)

ФРК (трансФРК и пр.) – дешёвый, практичный и хорошо изученный метод. Но от него уходили к femtoLASIK-методам, а затем к SMILE.

Почему?

По своей структуре, роговица как пирог состоит из 5-ти слоев: эпителия, передней пограничной (Боуменовой) оболочки, собственного вещества (стромы), задней пограничной (Десцеметовой) оболочки и эндотелия.

Структура роговицы

На этапе эмбрионального развития формируется из трех различных видов ткани: из поверхностной эктодермы в дальнейшем развивается эпителий, из мезодермы – средний слой строма, а из нейроэктодермы – внутренний слой эндотелия. По мере развития и дифференцирования каждая из этих тканей для сохранения своей структуры и специфичности нуждается в изоляции, что и достигается путем параллельного с ними развития пограничных оболочек –эндотелий формирует Десцеметову оболочку, а строма – Боуменову оболочку.

Что нужно знать про роговицу и какие особенности регенерации каждого слоя?

Роговица – часть глаза, которую вы можете легко увидеть: выпуклая прозрачная часть, которая контактирует с воздухом. Обычный диаметр – 10-12 мм. В центре толщина этой выпукло-вогнутой линзы 520-560 микрон, с краю около 1 миллиметра (все размеры усреднённые, бывают тонкие и очень тонкие роговицы). Роговица содержит 5 слоев.

1. Эпителий роговицы; 2. Боуменова мембрана; 3. Строма роговицы; 4. Десцеметова оболочка; 5. Эндотелий роговицы

Эпителий роговицы является многослойной плоской тканью и составляет около около 10% всей толщины роговицы. Клетки эпителия роговицы расположены в 5–7 рядов. Эпителий выполняет механическую защитную функцию, поскольку препятствует тому, что микроорганизмы и инородные тела проникали внутри глаза; биологическую защитную функцию, так как содержит клетки, которые участвуют в иммунном ответе, оптическую функцию – муцин слезной пленки заполняет все неровные элементы в поверхностном слое, что обеспечивает гладкую, прозрачную поверхность для прохождения и преломления лучей света; мембранную функцию – представляет собой биологическую мембрану, через которую могут проникать некоторые вещества. Как и обычный эпителий кожи, он отлично регенерирует, и его при операции ФРК удаляют, чтобы получить доступ глубже. В течение нескольких дней он восстанавливается.

Второй слой – боуменова мембрана. Это невероятно тонкий и важный слой, лежащий сразу под эпителием. Боуменова мембрана расположена под базальной мембраной, имеет толщину 12 мкм и не содержит клеток. Боуменова мембрана состоит из хаотично расположенных коллагеновых фибрилл. Имеет переднюю гладкую поверхность и заднюю поверхность для сглаживания неоднородного рельефа стромы, что обеспечивает прозрачность роговицы.

Боуменова мембрана не может восстанавливаться после повреждения, поэтому после повреждений роговицы в этой части, на месте дефектов образуются рубцы и прозрачность роговицы в этих участках нарушается — образуются помутнения. При лазерной коррекции линзы формируются глубже. Однако при любом резе через боуменову мембрану, мы перерезаем нервные окончания. При операции ФРК он удаляется, чтобы получить доступ к строме.

Именно повреждения боуменовой мембраны нарушают эпитализацию глаза, иннервацию и дают другие побочные эффекты.

Следующая часть роговицы – строма. Именно здесь идёт основная работа. Ткань – коллагеновые нити, пропитанные гиалуроновой кислотой. При увеличении они напоминают канаты:

Структура стромы

Строма является основной частью роговицы и занимает приблизительно 90% ее толщины. Строма роговицы состоит из параллельно расположенных пластин. Пластины образованы из коллагеновых фибрилл. Коллаген обеспечивает прозрачность роговицы и ее прочность. В строме роговицы выделяют две основные части: переднюю строму роговицы и заднюю строму роговицы. Передняя строма более рыхлая и состоит из более тонких пластин, задняя строма имеет более плотное и компактное строение.

Регенерация стромы осуществляется за счет клеток-кератоцитов, которые способны к синтезу коллагена и, за счет этого, поддерживают оптимальный уровень коллагеновых волокон и внеклеточного матрикса.

Эти самые канаты умеют отлично сращиваться, если их воткнуть один в другой (с образованием узлов-спаек, что мешает остроте зрения), но при этом, будучи положенными друг на друга внахлёст (то есть под разными углами), не образуют этих самых узлов, а просто сцепляются. Во время лазерной коррекции ReLEx SMILE мы вырезаем в этом слое линзу и вытаскиваем её. После операции полость в роговице смыкается – «канаты» ложатся друг на друга, но на местах разрезов не образуется чёткая граница из соединений, то есть всё остаётся прозрачным (сращивания единичных коллегановых нитей происходят на границе линзы, по внешнему диаметру). Каркас поддерживается как обычно — натянутой сверху боуменовой мембраной и нижними слоями.

В норме роговица имеет физиологические дефекты Боуменовой оболочки, через которые из стромы в эпителий проникают нервные волокна. В здоровой роговице, таких отверстий мало, и имеются определенные защитные механизмы. Когда выпаривается Боуменова оболочка при ФРК, сразу нарушаются защитные барьеры и возникает воспаление, организм на это реагирует образованием фиброзной соединительной ткани. Как раз субэпителиальный и интраэпителиальный фиброз и есть хейз (хейз (флер) – от англ. haze – туман). Он – причина достаточно медленного достижения итоговых результатов при выполнении фоторефракционной кератэктомии (ФРК), это остается одной из основных проблем метода. Стабилизация рефракции, как правило, продолжается несколько месяцев и может сопровождаться регрессом либо возникновением хейза.

Хейз, возникший от операции ФРК

Слабо поддающиеся лечению, выраженные помутнения, встречаются нечасто. Но даже преходящий умеренный хейз в период своего существования способен снижать некорригированную остроту и контрастность зрения, что становится частичным возвратом к дооперационной рефракции и ухудшает качество жизни пациентов.

Таким образом, возможное помутнение роговицы, медленное достижение оптического эффекта и болевой синдром, делают ФРК (трансФРК) одной из самых непопулярных методик лазерной коррекции зрения.

Традиционное лечение после ФРК предполагает длительное применение кортикостероидов, что позволяет снижать частоту и интенсивность возникновения хейза, а также в определенной степени влиять на послеоперационную динамику рефракции. Правда, в некоторых случаях роговичные помутнения в зоне фотоабляции оказываются достаточно стойкими и интенсивными, что требует иного подхода к лечению. В этом случае, к медикаментозной терапии, могут быть добавлены лазерные и даже хирургические методы.

Надо отметить, что при использовании ФРК, как способа докоррекции, риски снижены. А вот при первичной коррекции более 1-2 диоптрий все недостатки ФРК проявляются в полной мере.

Нервы конечно восстанавливаются, но на это уходит длительное время. Поэтому после ФРК-методов требуется поддерживающая терапия (до полугода), чтобы с глазом за это время ничего не происходило. Полная регенерация занимает около года. При SMILE-методе рассекается только около 10-15% нервных окончаний, что порождает существенные отличия.

Вторая особенность – каркас роговицы. Кератоконус – выпячивание роговицы вперёд за счёт внутриглазного давления. Это самое частое осложнение, и оно крайне неприятно и полностью необратимо.

Читайте также:  Поцарапал роговицу все зажило

LASIK

Примерно одновременно с ФРК, появилась идея не выпаривать линзу на поверхности глаза, а снимать верхний слой роговицы, вырезать под ним полость, а потом присоединять верхний слой обратно. Вначале доктор Зейлер из Берлина, придумал операцию ФТК с помощью эксимерного лазера. Исходя из его практических разработок и работ Хоссе Барракера из 50-х, офтальмолог с Кипра Иоаннис Полликарис разработал практическое воплощение этого метода.

Доктор Хоссе Барракер, был весьма неординарен. Только вдумайтесь, как проходили его операции в то время. В 1949 году, задолго до появления лазеров и нормальной методологии, он просто клал пациента поспать, срезал ему поверхность роговицы первого глаза, быстро замораживал, ехал на другой конец города, шлифовал замороженную роговицу на ювелирном станке и ехал назад в операционную. К моменту приезда роговица таяла, и он возвращал её обратно в глаз пациента.

Механический микрокератом (устройство с лезвием для срезания верхней части роговицы глаза), применялся для формирования лоскута роговицы до лазера

Первое время такой метод давал не слишком точную коррекцию — разброс составлял ±3 диоптрии, поэтому его применяли только для пациентов с близорукостью высокой степени тяжести. Позднее, офтальмологи Иоаннис Полликарис и Лучио Буратто поняли, что эксимерный лазер позволяет шлифовать роговицу точнее, чем срезать её лезвием.

Механическое срезание верхней части роговицы глаза

Хосе Барракер действительно заслуживает всемирного признания за идею изменения формы роговицы с использованием промышленных технологий. Ведь именно благодаря этим работам для многих хирургов стал естественным переход от вытачивания роговицы в замороженном состоянии к использованию эксимерного лазера.

Среди многих направлений исследований, которые в совокупности привели к разработке техники операции LASIC в современном варианте, очень немногим известны работы Российской команды офтальмологов. Именно они были первыми, кто провел эксимерную лазерную абляцию стромы роговицы под ее лоскутом.

Русские ученые А. Ражев и В. Чеботарев были первыми, кто придумал расслаивать строму и выполнять абляцию ложа, экспериментируя с двумя видами эксимерных лазеров. Исследователи заключили, что снижение частоты помутнений роговицы и малый спровоцированный астигматизм стали результатом сохранения в ходе операции Боуменовой мембраны.

Схема процедуры LASIC

Так появилась процедура LASIK (это аббревиатура: К — это кератомлилёз, остальные буквы — laser assisted, что означает «при поддержке лазера»). Полликарис привнёс в операцию наиболее прогрессивную часть – он оставлял «ножку» или «перемычку» для срезаемого лоскута (флэпа), что позволяет относительно ровно накладывать его обратно. Кстати, говоря о смещении флэпа при LASIK и femtoLASIK, стоит помнить, как про главную проблему. Срезаемая «крышка» держится именно на лоскуте шириной около 20-40 градусов, и сверху покрывается эпителием. И то, что она стоит на месте, а не «отскакивает», обеспечивает именно эпителий. И больше ничего. Поэтому при травмах глаза она может «отклеиться».

В 1992 году LASIK был введён как массовая операция. С тех пор он практически не менялся.

FemtoLASIK и FLEX

Хирургам требовалось получить от лазера большую точность реза и меньший нагрев тканей. Тогда появились первые фемтосекундные лазеры (которые дают импульс в десятки тысяч раз короче, чем первое поколение лазеров).

Вначале был разработан FemtoLASIK. Он работает с большей точностью, снизив общее количество осложнений. С помощью фемтосекундного лазера делается разрез по горизонтали (то, что раньше делали механическим лезвием), затем пациент переносится под эксимерный лазер, внутри стромы роговицы выпаривается линза, а сверху кладётся лоскут, который отрезали вначале.

FLEX

В процессе совершенствования, лазер стал позволять резать внутри тканей. Так появился FLEX – по своей сути, являющийся развитием femtoLASIK, поскольку там всё также есть флэп — «лоскут». Но FLEX делался уже одним лазером, а не двумя, поэтому операция происходила значительно быстрее, да и запаха «паленой роговицы», типичного для эксимерного лазера, не было.

Фактически, это всё тот же кератомилёз, только на более высоком уровне точности.

SMILE (ReLEx)

Ещё через некоторое время для FLEX стали уменьшать разрез лоскута, а потом профессор Вальтер Секундо и его коллега Маркус Блум решили попробовать вырезать линзу внутри целиком и достать её через небольшой разрез. Так появилась методика SMILE – аббревиатура означает: «малоинвазивное извлечение лентикулы». То есть вырезание линзы лазером прямо внутри роговицы, с последующим извлечением.

1. Вырезание лентикулы. 2. Удаление лентикулы. 3. Совмещение слоёв роговицы.

Главный эффект, который сегодня можно достичь современным лазером, – это то, что его луч можно сфокусировать в достаточно малой зоне на расстоянии от поверхности. Если эта зона фокусировки окажется внутри роговицы глаза (пускай и прозрачной), то произойдёт фактически микровзрыв, образующий разрыв ткани.

1. Создание пузырька плазмы, микровзрыв. 2. Расширение ударной и тепловой волны. 3. Кавитационный пузырь (расширение плазмы). 4. Формирование параллельного среза за счёт многих, рядом расположенных точек фокусировки лазера.

Как работает такой лазер?

Для того чтобы вырезать линзу на поверхности глаза, нужно примерно около миллиона микроразрывов, то есть около миллиона точек фокусировки, в которых создаются пузырьки плазмы.

Для ровного разреза нужно от 10 тысяч до 100 тысяч точек фокусировки на квадратный миллиметр. Для того чтобы вырезать изнутри роговицы «линзу» диаметром 7 миллиметров (самый частый случай), нужно около 4,3 миллионов лазерных импульсов.

Принципиальная схема операции SMILE

Поперечное сечение лентикулы:

Форма лентикулы для операции у пациента с близорукостью (-5 диоптрий) в реальных пропорциях. Диаметр – 6 миллиметров, толщина у края – 15 микрометров, край режется под прямым углом.

Почему нужен фемтолазер? Потому что чем меньше импульс, тем меньше в итоге получается пузырь плазмы, и тем меньше будет толщина реза и меньше нагрев тканей. Необходимо отметить, что при нагреве, увеличивается риск различных травм и осложнений, вызываемых тепловым воздействием. Чаще всего это означает проблемы с иннервацией, называемый также «синдром сухого глаза». Реже – болезненное изменение формы роговицы, которое невозможно переделать (кератоконус).

Затем лентикула отделяется от толщи роговицы тупым шпателем и вынимается из глаза хирургом, проводящим операцию (это делается пинцетом).

В 2007 году профессор Вальтер Секундо сделал первую операцию SMILE, с двумя разрезами по 5 мм. При этом, сохранялось большее количество нервов внутри глаза и меньше травмировалась боуменова мембрана.

1 – нормальное пролегание нервов, 2 – после процедуры LASIK или FLEX (где требуется вырез флэпа), 3 – после процедуры ReLEx SMILE, пунктиром показаны границы лентикулы, сплошной линией – разрез, через который она вынимается из глаза

Разработчикам данной технологии удалось незначительно уменьшить длину разрезов. Сегодня опытным хирургам (их пока очень мало) удаётся работать в диапазоне длины реза от 3 до 4,5 мм).

Итак, сама процедура:

Глаз обезболивают Тетракаином. Хирург протирает поверхность, чтобы застраховаться от микросгустков жира. Выполняется центровка и фиксация глаза пневмозахватом. Лазером начинает формироваться лентикула. На второй-третей минуте происходит формирование разреза поверхности роговицы, через который лентикула будет доставаться.

Далее пациент из-под управления ЧПУ переходит в руки хирурга (фактически он перемещается под аппаратом из-под лазера ближе к врачу).

Подробности всей процедуры операции SMILE , а также информацию о возможных осложнениях операций лазерной коррекции зрения читайте в полной версии статьи на сайте здоровоезрение.рф

Эксперт: Лила Унгвари, профессиональный офтальмолог c опытом работы более 25 лет в Европейских офтальмологических центрах, из которых 10 занималась аттестацией лётного персонала Авиакомпаний. Европейский инструктор восстановления зрения.

Подписывайтесь на наш YouTube-канал и в социальных сетях: ВК, Инстаграм, ФБ

Источник