В колбочках сетчатки глаза содержится пигмент

Сечение слоя сетчатки глаза

Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро;
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент.

Ко́лбочки (англ. cone) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.

Колбочки чувствительны к свету благодаря наличию в них специфического пигмента — йодопсина. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).

В литературе представлены различные оценки, хотя и близкие числа колбочек в сетчатке человеческого глаза у взрослого человека со 100 % зрением. Так в[1] указывается число от шести до семи миллионов колбочек, большинство из которых содержится в жёлтом пятне.
Обычно указываемое количество в шесть миллионов колбочек в человеческом глазу было найдено Остербергом в 1935 году[2]. Учебник Ойстера (1999)[3] цитирует работу Curcio et al. (1990), с числами около 4,5 миллионов колбочек и 90 миллионов палочек в сетчатке человека[4].

Размеры колбочек: длина около 50 мкм, диаметр — от 1 до 4 мкм.

Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.

Строение фоторецепторов[править | править код]

Колбочки и палочки сходны по строению и состоят из четырех участков.

В строении колбочки принято различать (см. рисунок):

  • наружный сегмент (содержит мембранные полудиски),
  • связующий отдел (перетяжка),
  • внутренний сегмент (содержит митохондрии),
  • синаптическую область.

Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё. Они представляют собой складки плазматической мембраны, покрытые светочувствительным пигментом. Обращённая к свету, наружная часть столбика из полудисков, постоянно обновляется — за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора, происходит примерно за 10 дней. В колбочках мембранных полудисков меньше, чем дисков в палочке, и их количество порядка нескольких сотен. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.

В синаптической области клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.

Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении[5].

Цветное зрение[править | править код]

Нормализованные графики спектральной зависимости чувствительности к свету у человеческих клеток-колбочек различных видов — коротковолновых, средневолновых и длинноволновых (синий, зелёный и красный графики) и клеток-палочек (чёрный график). NB: ось длин волны на данном графике линейная.

Те же графики, но без нормализации светочувствительности

По чувствительности к свету с различными длинами волн различают три вида колбочек. Колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение.

НазваниемаксимумНазвание цвета
S443 нмсиний
M544 нмзелёный
L570 нмкрасный

Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[6]

Читайте также:  Операция по отслойке сетчатки с вводом силикона

Пигмент, чувствительный к фиолетово-синей области спектра, названный цианолаб, у человека кодируется геном OPN1SW[7][8][9].

В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Пространственное разрешение глаза человека различается для разных цветов: На белом фоне ориентацию жёлтых линий определить сложно, поскольку жёлтый отличается от белого синей (коротковолновой) компонентой

Колбочки трёх видов распределены в сетчатке неравномерно[10]. Преобладают длинно- и средневолновые, коротковолновых колбочек гораздо меньше и они (как и палочки) отсутствуют в центральной ямке. Такая асимметрия объясняется цветовой аберрацией — изображение хорошо сфокусировано на сетчатке только в длинноволновой части спектра, то есть если количество «синих» колбочек и увеличить, чётче изображение не станет[11].

Примечания[править | править код]

  1. ↑ The Rods and Cones of the Human Eye.
  2. Osterberg, G. Topography of the layer of rods and cones in the human retina (англ.) // Acta Ophthalmologica (англ.)русск. : journal. — Wiley-Liss, 1935. — Vol. Suppl. 13, no. 6. — P. 1—102.
  3. Oyster, C. W. The human eye: structure and function (неопр.). — Sinauer Associates (англ.)русск., 1999.
  4. Curcio, CA.; Sloan, KR.; Kalina, RE.; Hendrickson, AE. Human photoreceptor topography (англ.) // J Comp Neurol (англ.)русск. : journal. — 1990. — February (vol. 292, no. 4). — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.

  5. Н. Грин, У.Стаут, Д.Тейлор. Биология: в 3-х т. — Пер.с англ./ под.ред. Р.Сопера. — М.: Мир, 1993. — Т. 2. — С. 280—281.

  6. Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
  7. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments (англ.) // Science : journal. — 1986. — April (vol. 232, no. 4747). — P. 193—202. — PMID 2937147.
  8. Fitzgibbon J., Appukuttan B., Gayther S., Wells D., Delhanty J., Hunt D. M. Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32 (англ.) // Hum Genet : journal. — 1994. — February (vol. 93, no. 1). — P. 79—80. — PMID 8270261.
  9. ↑ Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan).
  10. ↑ Rods & Cones см. раздел The Receptor Mosaic.
  11. ↑ Brian A. Wandell, Foundations of Vision, Chapter 3: The Photoreceptor Mosaic (недоступная ссылка). Архивировано 5 марта 2016 года.

Источник

Зрительная фототрансдукция представляет собой комплекс процессов, который отвечает за изменение (фототрансформацию) пигментов и последующую их регенерацию. Необходимо это для передачи информации из внешнего мира к нейронам. Благодаря биохимическим процессам, при влиянии света с различной длиной волны, возникают структурные изменения в строении пигментов, которые находятся в бислойном липидном участке мембран внешней доли фоторецептора.

Зрительные пигменты сетчатки глаза

Изменения в фоторецепторах

Фоторецепторы всех позвоночных животных, включая человека, могут реагировать на световые лучи путем изменения фотопигментов, которые располагаются в бислойных мембранах в области внешней доли колбочек и палочек.

Сам зрительный пигмент представляет собой белок (опсин), который является производным витамина А. Сам бета-каротин содержится в пищевых продуктах, а также синтезируется в клетказ сетчатки (фоторецептоный слой). Эти опсины ил хромофоры в связанном состоянии локализуются в глубине биполярных дисков в зоне внешних долей фоторецепторов.

Около половины опсинов приходится на бислойный липидный слой, который связан снаружи короткими петлями белка. Каждая молекула родопсина имеет в своем составе семь трасмембранных участков, которые окружают хромофор в бислое. Хромофор располагается горизонтально в мембране фоторецептора. Внешний диск мембранного участка имеет большое количество зрительных молекул пигмента. После того, как был поглощен фотон света, вещество пигмента переходит из одной изоформы в другую. В результате этого молекула претерпевает конформационные изменения, а структура рецептора восстанавливается. При этом метародопсин активирует G-белок, что запускает каскад биохимических реакций.

Фотоны света воздействуют на зрительный пигмент, что приводит к активации каскада реакций: фотон – родопсин – метародопсин – трансдуцин – фермент, который гидролизует цГМФ.В результате этого каскада формируется закрывающаяся мембрана на внешнем рецепторе, которая связана с цГМФ и отвечает за работу катионного канала.

В темноте через открытые каналы проникают катионы (в основном ионы натрия), которые приводят к частичной деполяризации ячейки фоторецептора. При этом этот фоторецептор выбрасывает медиатор (глутамат аминокислоты), который воздействует на инаптические окончания нейронов второго порядка. При незначательном световом возбуждении молекула родопсина изомеризуется в активную форму. Это приводит к закрытию ионного трансмембранного канала, и, соответственно, останавливает катионный поток. В результате клетка фоторецептора гиперполяризуется, а медиаторы перестают выделяться в зоне контакта с нейронами второго порядка.

Читайте также:  Макулярный разрыв сетчатки витрэктомия

В темноте через трансммбранные каналы осуществляется поток ионов натрия (80%), кальция (15%), магния и других катионов. Чтобы удалить избыток кальция и натрия во время темноты, в клетках фоторецепторов действует катионный обменник. Ранее считалось, что кальций участвует в фотоизомерации родопсина. Однако в настоящее время получены доказательства того, что этот ион играет и другие роли в фототрансдукции. За счет присутствия достаточной концентрации кальция, палочковые фоторецепторы становятся более восприимчивыми к свету, а также значительно увеличивается восстановление этих клеток после освещения.

Колбочковые фоторецепторы способны приспособиться к уровню освещения, поэтому человеческий глаз способен воспринимать объекты при разном освещении (начиная от теней под деревом и заканчивая предметов, расположенных на блестящем освещенном снегу). Палочковые фоторецепторы имеют меньшую приспособляемость к уровню освещения (7-9 единиц и 2 единицы для колбочек и палочек, соответственно).

Фотопигменты экстерорецепторов колбочек и палочек сетчатки глаза

К фотопигментам колбочкового и палочкового аппарата глаза относят:

  • Йодопсин;
  • Родопсин;
  • Цианолаб.

Все эти пигменты отличаются друг от друга аминокислотами, которые входят в состав молекулы. В связи с этим пигменты поглощают определенную длину волны, точнее диапазон длин.

Фотопигменты экстерорецепторов колбочек

В колбочках сетчатки глаза располагается йодопсин и разновидность йодопсина (цианолаб). Все выделяют три типа йодопсина, которые настроены на длину волны в 560 нм (красный), 530 нм (зеленый) и 420 нм (синий).

О существовании и идентификации цианолаба

Цианолаб представляет собой разновидность йодопсина. В сетчатке глаза синие колбочки располагаются регулярно в периферической зоне, зеленые и красные колбочки локализуются хаотично по всей поверхности сетчатки. При этом плотность распределения колбочек с зеленым пигментов больше, чем красных. Наименьшая плотность отмечается у синих колбочек.

В пользу теории трихромазии свидетельствуют следующие факты:

  • Была определена спектральная чувствительность двух пигментов колбочки при помощи денситометрией.
  • С использованием микроспектрометрии было определено три пигмента колбочкового аппарата.
  • Был идентифицирован генетический код, ответственный за синтез красных, синих и зеленых колбочек.
  • Ученым удалось изолировать колбочки и измерить их физиологический ответ на облучение светом с определенной длинной волны.

Теория трохромазии раньше была не в состоянии объяснить наличие четырех основных цветов (синий, желтый, красный, зеленый). Также было затруднительно объяснить, почему люди-дихроматы способны различать белый и желтый цвета. В настоящее время открыт новый фоторецептор сетчатки, в котором роль пигмента исполняет меланопсин. Это открытие расставило все по местам и помогло ответить на многие вопросы.

Также в недавних исследованиях при помощи флуоресцентного микроскопа были изучены срезы сетчатки птиц. При этом было выявлено четыре типа колбочек (фиолетовая, зеленая, красная и синяя). За счет оппонентного цветного зрения фоторецепторы и нейроны дополняют друг друга.

Фотопигмент палочек родопсин

Родопсин относится к семейству G-связанных белков, который так назван из-за механизма трансмембранной передачи сигнала. При этом в процесс вовлекаются G-белки, расположенные в примембранном пространстве. При исследовании родопсина была установлена структура этого пигмента. Это открытие очень важно для биологии и медицины, потому что родопсин является родоначальником в семействе GPCR-рецепторов. В связи с этим его строение используется в изучении всех остальных рецепторов, а также определяет функциональные возможности. Родопсин назван так, потому что имеет ярко-красную окраску (с греческого он дословно переводится как розовое зрение).

Диагностика сетчатки глаза

Дневное и ночное зрение

Изучая спектры поглощения родопсина, можно заметить, что восстановленный родопсин отвечает за восприятие света в условиях низкой освещенности. При дневном свете этот пигмент разлагается, и максимальная чувствительность родопсина смещается в синюю спектральную область. Это явление получило название эффект Пуркинье.

При ярком освещении палочка перестает воспринимать дневные лучи, а эту роль на себя берет колбочка. При этом происходит возбуждение фоторецепторов в трех областях спектра (синий, зеленый, красный). Далее эти сигналы преобразуются и направляются в центральные структуры мозга. В результате формируется цветное оптическое изображение. Для полного восстановления родопсина в условиях низкой освещенности требуется коло получаса. В течение всего этого времени происходит улучшение сумеречного зрения, которое достигает максимума по окончании периода восстановления пигмента.

Читайте также:  Ангиопатия сетчатки обоих глаз причины

Биохимик М.А. Островский провел ряд фундаментальных исследований и показал, что палочки, содержащие пигмент родопсин, участвуют в восприятии объектов в условиях низкого освещения и отвечают за ночное зрение, которое имеет черно-белую окраску.

Источник

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Нормализованные кривые чувствительности йодопсинов и родопсином (штриховая линия)

Йодопсин (iodopsinum; от др.-греч. ἰώδης — «подобный цвету фиалки» + др.-греч. ωπς — глаз) — общее название нескольких зрительных пигментов человека и некоторых млекопитающих животных. Эти пигменты состоят из белковой молекулы, связанной с хромофором ретиналем. Содержатся в колбочках сетчатки глаза и обеспечивают цветовое зрение, в отличие от другого зрительного пигмента — родопсина, ответственного за сумеречное зрение.

Типы йодопсинов[править | править код]

Тип колбочекНазваниеДиапазонМаксимум чувствительности[1][2]
S (OPN1SW) — «тритан», «цианолаб»β400–500 нм420–440 нм
M (OPN1MW) — «дейтан», «хлоролаб»γ450–630 нм534–545 нм
L (OPN1LW) — «протан», «эритролаб»ρ500–700 нм564–580 нм

История исследований[править | править код]

Первые попытки найти три пигмента и, как предполагалось три типа колбочек (исходя из предположений трёхкомпонентной теории зрения, что в каждой колбочке содержится только один пигмент) проводились Раштоном[3], который довёл до совершенства методику денситометрии для прижизненного измерения коэффициентов поглощения света с различной длиной волны в слое фоторецепторов сетчатки. Было показано, что у дихроматов отсутствует один из пигментов, имеющихся у трихроматов, и соответствующих красно- и зелёночувствительному приёмникам трихромата: «эритролаб» (максимум около 585 нм.) у протанопа и «хлоролаб» (максимум около 540 нм.) — у дейтеранопа.

Обнаружить присутствие третьего (теоретически предсказанного синечувствительного пигмента) «цианолаба», который (по трёхкомпонентной теории цветового зрения) содержится в третьем «приёмнике», долго не удавалось ни у дихроматов, ни у трихроматов. Это попытались объяснить жёлтой пигментацией в районе центральной ямки, которая по мнению исследователей «затрудняет» измерения в синем конце спектра.

Следующим шагом в этом направлении явилось исследование фотопигментов, содержащихся в отдельных колбочках человека[4] и макаки[5]. Размеры фовеальных колбочек слишком малы, чтобы они могли служить объектом исследования, и все полученные данные касаются только парафовеальных колбочек. Каждая колбочка, по крайней мере внефовеальная, содержит, видимо, лишь один из пигментов или преимущественно один из них. Вопрос о локализации пигментов в фовеальных колбочках в тот период решён не был, и предполагалось, что фовеальные колбочки содержат смесь нескольких пигментов.[5].

Исследование оптических характеристик йодопсина[править | править код]

Рис. 1. Кривые спектральной чувствительности колбочковых приёмников нормального трихромата, определённые колориметрическим методом (А), и спектры поглощения, измеренные в наружных сегментах одиночных колбочек макаки (Б). (По. Marks et al., 1964). Сплошные кривые на А представляют результат расчёта кривых спектральной чувствительности по кривым сложения нормального трихромата (Бонгард, Смирнов, 1955); кружки — результаты опытов с дихроматами[6] .

Далее последовала работа Уолда[7]. Применение интенсивного адаптирующего жёлтого, пурпурного и синего фона, позволило Уолду получить три разные пороговые кривые. Делая поправку на поглощение в передних средах глаза (хрусталик и жёлтый макулярный пигмент), Уолд называет в качестве максимумов трёх «приёмников» (хотя реально он обнаружил не приёмники, а только максимумы поглощения тканями сетчатки) 430, 540 и 575 нм.[8]

Ссылки[править | править код]

  1. Wyszecki, Günther; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae (англ.). — 2nd. — New York: Wiley Series in Pure and Applied Optics, 1982. — ISBN 0-471-02106-7.
  2. R. W. G. Hunt. The Reproduction of Colour (неопр.). — 6th. — Chichester UK: Wiley–IS&T Series in Imaging Science and Technology, 2004. — С. 11—12. — ISBN 0-470-02425-9.
  3. Rushton W. A. H. 1958. In: Visual problems of colour. N. P. L. Sump. No 8, 1, Teddington : 73.
  4. ↑ Wald G., Brown P. K., 1964. Science, 144 : 45., Wald G., Brown P. K., 1965. Cold Spring Harbor Symp., 30 : 345
  5. 1 2 Marks W. B., W. H. Dobelle, E. F. McNichol. 1964. Science, 143 : 1181.
  6. ↑ Нюберг Н. Д., Юстова Е. Н., 1955. Тр. Гос. оптич. инст., 24 : 33.
  7. ↑ Wald G. 1964. Science, 144 : 1007.
  8. ↑ АН СССР, объединённый научный совет «физиология человека и животных», Физиология сенсорных систем. Ч. 1. Физиология зрения. 1971 г., Издательство «Наука», Ленинградское отделение. Гл. 11, Цветовое зрение, Стр. 246—258

Источник