Толщина сетчатки в макуле

При офтальмоскопии нормального глазного дна определяется достаточно яркий фовеолярный рефлекс, свидетельствующий о сохранении контура центральной ямки. Сосуды сетчатки в ряде случаев имеют умеренные гипертонические и атеросклеротические изменения. В стекловидном теле встречается нитчатая деструкция, как вариант возрастной нормы возможно плавающее в проекции диска зрительного нерва кольцо Weiss, которое свидетельствует о полной задней отслойке стекловидного тела. 

В норме на ОСТ определяется правильный профиль макулы с углублением в центре (рис. 1). Слои сетчатки дифференцируются согласно своей светоотражающей способности, равномерные по толщине, без очаговых изменений. Можно выделить слой нервных волокон, внутренний сетчатый слой, наружный сетчатый слой, фоторецепторы и хориоидею. Наружный край сетчатки на ОСТ ограничен высоко фоторефлектирующим ярко-красным слоем толщиной около 70 мкм. Он представляет собой единый комплекс пигментного эпителия сетчатки и хориокапилляров. Более темная полоса, которая определяется на томограмме непосредственно перед комплексом «ПЭС/хориокапилляры», представлена фоторецепторами. Ярко-красная линия на внутренней поверхности сетчатки соответствует слою нервных волокон.

Макула в норме. А. Биомикроскопия макулы пациента в возрасте 42 лет. Соотношение толщины артерий к толщине вен равно 2:3. Фовеолярный рефлекс сохранен. Отсутствуют очаговые изменения. Б. ОСТ нормальной макулярной области. Слои сетчатки четко дифференцируются. Центральная ямка хорошо выражена. Толщина сетчатки в центральной ямке желтого пятна составляет 161 мкм, у края фовеа — 254 мкм.

Рис. 1. Макула в норме. 

А. Биомикроскопия макулы пациента в возрасте 42 лет. Соотношение толщины артерий к толщине вен равно 2:3. Фовеолярный рефлекс сохранен. Отсутствуют очаговые изменения.

Б. ОСТ нормальной макулярной области. Слои сетчатки четко дифференцируются. Центральная ямка хорошо выражена. Толщина сетчатки в центральной ямке желтого пятна составляет 161 мкм, у края фовеа — 254 мкм.

Стекловидное тело в норме оптически прозрачно и на томограмме имеет черный цвет. Резкий контраст между окрашиванием тканей позволил производить измерение толщины сетчатки. В области центральной ямки желтого пятна она составила в среднем около 162 мкм, у края фовеа — 235 мкм. Не выявлено достоверной зависимости толщины сетчатки от возраста как в центре фовеола, так и по краю фовеа. Тем не менее, отмечено, что у мужчин толщина макулярной сетчатки достоверно больше, чем у женщин. 

Подобно тому, как в условиях максимального расширения зрачка возможна офтальмоскопия не только центральных, но периферических отделов глазного дна, так и ОСТ позволяет исследовать не только макулу, но и парамакулярную сетчатку и даже зону экватора (рис. 2). Для этого наряду с достижением максимального мидриаза необходимо повернуть глазное яблоко таким образом, чтобы лазерный луч проецировался на исследуемую область. Соединение отдельных снимков воедино позволяет получить панорамное изображение сетчатки пациента. 

Панорама нормальной сетчатки женщины 34 лет выполненная в меридиане 3-9 часов. А. Фотография глазного дна. Диск зрительного нерва розового цвета с четкими границами. Ход и калибр сосудов правильный. Очаговых изменений нет. Фовеолярный рефлекс сохранен. Б. ОСТ сетчатки в меридиане 3-9 часов. Слои сетчатки четко дифференцируются. Фовеолярное вдавление сохранено. Физиологическая экскавация ДЗН, нейроглия не нарушена. Толщина сетчатки по направлению к периферии уменьшается.

Рис. 2. Панорама нормальной сетчатки женщины 34 лет выполненная в меридиане 3-9 часов.

А. Фотография глазного дна. Диск зрительного нерва розового цвета с четкими границами. Ход и калибр сосудов правильный. Очаговых изменений нет. Фовеолярный рефлекс сохранен. 

Б. ОСТ сетчатки в меридиане 3-9 часов. Слои сетчатки четко дифференцируются. Фовеолярное вдавление сохранено. Физиологическая экскавация ДЗН, нейроглия не нарушена. Толщина сетчатки по направлению к периферии уменьшается.

Оптическая когерентная томография в офтальмологии 

под ред. А.Г. Щуко, В.В. Малышева

Опубликовал Константин Моканов

Источник

Сосудистая патология сетчатки глаза

Описание

Окклюзия центральной артерии сетчатки и ее ветвей развивается вследствие ее эмболии или тромбоза и проявляется внезапным снижением остроты зрения, сужением или выпадением поля зрения. Для офтальмоскопической картины артериальной окклюзии характерными являются светлые зоны ишемического отека, на фоне которых макулярная область приобретает вид «вишневой косточки». Патоморфологическими признаками артериальных окклюзий являются ишемия внутренних слоев сетчатки и внутриклеточный отек. При исследовании пациентов с артериальными окклюзиями на оптическом томографе внутренние слои сетчатки проявляют повышенные отражающие свойства, что свидетельствует об ишемическом повреждении внутренних слоев сетчатки и накоплении в них продуктов клеточного распада. Соответственно зонам внеклеточного отека увеличивается и толщина сетчатки на томограммах. Наружные слои сетчатки и ПЭ выглядят гипорефлективными, вследствие блокады проникновения сканирующего луча во внутренних слоях сетчатки на фоне ее отека (рис. 34).

Толщина сетчатки в макуле

Рисунок 34. Линейная оптическая томограмма макулы при окклюзии центральной артерии сетчатки.

Тромбоз центральной вены сетчатки и ее ветвей, как правило, сопровождается снижением остроты зрения и метаморфопсиями вследствие развития отека центральной зоны. Для офтальмоскопической картины характерны множественные пламеобразные кровоизлияния, значительно расширенные извитые вены, отек сетчатки (рис. 35).

Толщина сетчатки в макуле

Рисунок 35. Фотография глазного дна пациента А. Тромбоз центральной вены сетчатки. Обширные интраретинальные геморрагии, отек сетчатки.

Флюоресцентные ангиограммы при венозных тромбозах отражают «зернистость» кровотока, запаздывание контрастирования вен, неперфузируемые зоны сетчатки, блокированную флюоресценцию, соответствующую интраретинальным кровоизлияниям (рис. 36).

Толщина сетчатки в макуле

Рисунок 36. Флюоресцентная ангиограмма сетчатки (поздняя фаза) пациента А.

ОКТ при венозных тромбозах отражает увеличение толщины сетчатки и снижение ее отражающих свойств пропорционально степени отека (рис. 37).

Толщина сетчатки в макуле

Рисунок 37. Линейная оптическая томограмма макулярной области пациента А.

Обычно накопление интраретинальной жидкости, выявляемое на томограммах при венозных окклюзиях, носит кистозный характер. Нередко выявляется и субретинальное накопление жидкости в виде отслоек нейросенсорной сетчатки. Преретинальные кровоизлияния, выявляемые в ряде случаев при офтальмоскопии, выглядят на томограммах в виде эпиретинальных гиперрефлективных участков, блокирующих отражение от структур сетчатки.

Помимо традиционных терапевтических и лазерных методов лечения, арсенал лечебных мероприятий при тромбозе вены сетчатки пополнился за последнее время рядом новых методик, среди которых:

  • интравитреальное введение пролонгированных стероидных препаратов в стекловидное тело
  • и хирургические вмешательства на тромбированных сосудах сетчатки.

При лечении тромбоза вен сетчатки особая практическая ценность ОКТ заключается в возможности неинвазивно и с высокой точностью определять степень выраженности отека центральной зоны сетчатки и таким образом осуществлять контроль результатов лечения в динамике.

Приведем клинический пример. Пациент П., 56 лет, в анамнезе — выявленный 6 месяцев назад тромбоз нижневисочной ветви центральной вены сетчатки правого глаза, проведено несколько сеансов паравазальной ЛК. Острота зрения 0,05. Учитывая активность процессов не-оваскуляризации пациенту была проведена панретинальная ЛК сетчатки. Фотография глазного дна пациента, флюоресцентная ангиограмма и оптические томограммы, в т.ч. в режиме картирования, приведены на рисунках 38-41.

Читайте также:  Как укрепить сетчатку глаз без операции

Толщина сетчатки в макуле

Рисунок 38. Фотография глазногодна пациента П.

Толщина сетчатки в макуле

Рисунок 39. Флюоресцентная ангиограмма сетчатки пациента П.

Толщина сетчатки в макуле

Рисунок 40. Линейная оптическая томограмма макулы пациента П.

Толщина сетчатки в макуле

Рисунок 41. Анализ оптических томограмм пациента П. в режиме картирования.

Следует отметить, что флюоресцентная ангиограмма не дает представления о величине отека центральных отделов сетчатки. В то же время, линейная оптическая томограмма (рис. 42),

Толщина сетчатки в макуле

Рисунок 42. Линейная оптическая томограмма пациента П. через 3 месяца после лечения.

выполненная спустя шесть недель после панретинальной ЛК, отражает уменьшение кистозных изменений в центральных отделах. При сравнении толщины сетчатки в режиме картирования (рис. 41, 43)

Толщина сетчатки в макуле

Рисунок 43. Анализ оптических томограмм сетчатки в режиме картирования через 6 недель после лечения.

до и после лечения выявлено значительное уменьшение толщины центральных отделов, сопровождавшееся повышением остроты зрения до 01. Для выявления разницы в толщине сетчатки наиболее иллюстративным является протокол «Retinal ThicknessVolume Change Analysis», отражающий в режиме картирования разницу между первым и последним измерением (рис. 44).

Толщина сетчатки в макуле

Рисунок 44. Сравнительный анализ режимов картирования при их наложении с использованием аналитического протокола «Retinal ThicknessVolume Change Analysis».

Диабетическая ретинопатия является ведущей причиной слепоты населения развитых стран. Клинические проявления ее многообразны и включают

  • макулярный отек,
  • микроаневризмы,
  • интраретинальные кровоизлияния,
  • экссудаты,
  • ишемические инфаркты в слое нервных волокон — при непролиферативной форме,
  • а также ростом новообразованных сосудов диска зрительного нерва, сетчатки, радужки — при пролиферативной форме заболевания

(рис. 45, 46).

Толщина сетчатки в макуле

Рисунок 45. Фотография глазного дна пациента Т. с препролиферативной диабетической ретинопатией. Микрогеморрагии, отек сетчатки. Стрелкой указано направление сканирования.

Толщина сетчатки в макуле

Рисунок 46. Флюоресцентная ангиограмма (артериовенозная фаза) пациента Т.

Основной причиной снижения зрительных функций у пациентов с диабетической ретинопатией служит макулярный отек. На оптических томограммах предоставляется возможность определять те утолщения сетчатки, которые не различимы при офтальмоскопии, что особенно важно для диагностики ранних проявлений диабетической макулопатии. При этом зоны отека выглядят как слои с пониженной рефлективностью, преимущественно расположенные во внешних слоях сетчатки. Другими морфологическими проявлениями диабетической ретинопатии являются твердые экссудаты и интраретинальные геморрагии, которые выглядят на томограммах гиперрефлективными (рис. 47).

Толщина сетчатки в макуле

Рисунок 47. Линейная оптическая томограмма через макулярную зону пациента Т. отражает наличие диффузного интраретинального отека. Определяются интраретинальные геморрагии, плотная адгезия корковых слоев стекловидного тела.

Применение ОКТ позволило выявить у пациентов с диабетическим макулярным отеком группу случаев, в которой доминирующей причиной утолщения центральной зоны сетчатки служит витреомакулярная тракция или ретиношизис. В этих случаях ОКТ выявляет тесно связанную с областью центральной ямки гиперрефлективную мембрану, что далеко не всегда возможно при офтальмоскопии. При пролиферативной диабетической ретинопатии преретинальные фиброваскулярные или фиброглиальные шварты выглядят на томограммах в виде гиперрефлективных тяжей (рис. 48).

Толщина сетчатки в макуле

Рисунок 48. Оптическая томограмма глаза пациента с пролиферативной диабетической ретинопатией. Эпиретинальная мембрана. Интраретинальный отек, экссудаты.

Как правило, на фоне пролиферативных изменений томограммы выявляют нерегулярную, искаженную поверхность сетчатки и ее утолщение, что является следствием контракции пролиферативной ткани. На рисунках 49 и 50

Толщина сетчатки в макуле

Рисунок 49. Фотография глазного дна пациента Н. Обширная хориоретинальная атрофия после панретинальной лазерной коагуляции.

Толщина сетчатки в макуле

Рисунок 50. Оптическая томограмма глаза пациента Н. отражает выраженный отек центральных отделов сетчатки на фоне витреомакулярной тракции.

представлены фотография глазного дна и линейная томограмма пациента с витреомакулярным тракционным синдромом, развившимся на фоне проведения исключительно плотной панретинальной лазерной коагуляции сетчатки при диабетической ретинопатии.

Как и при эпиретинальных мембранах, томография позволяет оценить степень выраженности структурных изменений сетчатки и локализацию тракционного воздействия, что крайне важно при выборе времени и тактики хирургического лечения. Проиллюстрируем последнее клиническим примером. Пациентка Д., 58 лет, страдающая сахарным диабетом I типа более 10 лет, обратилась в связи с резким снижением остроты зрения правого глаза. Фотография глазного дна, а также оптическая томограмма сетчатки приведены на рисунках 51, 52.

Толщина сетчатки в макуле

Рисунок 51. Фотография глазного дна пациентки Д., перед операцией.

Толщина сетчатки в макуле

Рисунок 52. Линейная оптическая томограмма пациентки Д. отражает наличие тракционной отслойки сетчатки.

После проведенного хирургического лечения (трансцилиарная витрэктомия, удаление эпиретинального фиброза, тампонада силиконовым маслом) было достигнуто прилегание тракционной отслойки и уменьшении макулярного отека (рис. 53).

Толщина сетчатки в макуле

Рисунок 53. Фотография глазного дна пациентки Д., в послеоперационный период.

Следует отметить, что оптические томограммы, выполненные в послеоперационном периоде, значительно лучше чем при офтальмоскопии отражают наличие резидуального отека центральной зоны и остатки эпиретинальной ткани (рис. 54).

Толщина сетчатки в макуле

Рисунок 54. Линейная оптическая томограмма подтверждает прилегание сетчатки. Отмечено присутствие интраретинальной жидкости и гиперрефлективный сигнал от внутренних слоев сетчатки (в левой части томограммы), характерный для силиконового масла в витреальной полости.

Nussenblatt и соавт. показали, что острота зрения у пациентов с диабетическим макулярным отеком в большей степени коррелирует не с выраженностью точек просачивания на флюоресцентных ангиограмах, а с толщиной сетчатки в центральной зоне. Поскольку томограммы с высокой точностью отражают высоту и распространенность отека макулярной области сетчатки, на их основе возможно с большой достоверностью проводить мониторинг результатов лечения. Некоторыми авторами предпринимались попытки использовать измерения толщины центральной зоны сетчатки с помощью ОКТ в качестве скрининг метода для раннего выявления диабетической макулопатии. Однако об отличиях средних значений толщины сетчатки в норме и при ее начальных изменениях можно достоверно говорить лишь при разнице между этими параметрами не менее чем в 25-30 микрон. В то же время, по данным различных авторов (табл. 1), средние значения толщины сетчатки в норме обладают большой вариабельностью.

Читайте также:  Отслоение сетчатки какие капли можно капать

Толщина сетчатки в макуле

Таблица 1. Толщина сетчатки в норме поданным разных авторов (ОКТ поколений I и II)

С появлением новых методов лечения диабетической патологии ОКТ диагностика стала особенно актуальной, поскольку позволяет оценить не только толщину, но и структуру витреоретинального интерфейса. В частности, Otani Т. с соавт. были прослежены закономерности прогноза результатов хирургического лечения пациентов с макулярным отеком в зависимости от степени адгезии сетчатки и задних отделов стекловидного тела. Кроме того, ОКТ активно используется для контроля эффективности лечения диабетического макулярного отека с помощью приобретающего все большую популярность метода интравитреального введения пролонгированных стероидных препаратов.

—-

Статья из книги: Биомикроретинометрия | Родин А.С.

Источник

Внутренняя оболочка глаза – сетчатка (retina) – тонкая прозрачная структура, выстилающая всю поверхность сосудистой оболочки и контактирующая со стекловидным телом. Выделяют оптическую (pars optica retinae) и редуцированную реснично-радужковую (pars ciliaris et iridica retinae) части сетчатки. Оптическая часть воспринимает свет и является высокодифференцированной нервной тканью, почти на всем протяжении состоящей из 10 слоев (рис. 1.1). Она располагается от диска зрительного нерва до плоской части цилиарного тела и заканчивается зубчатой линией (ora serrata). Затем сетчатка редуцирует до двух слоев, теряет свои оптические свойства и выстилает внутреннюю поверхность цилиарного тела и радужки.

    Центральная область сетчатки – макула – ограничена головкой зрительного нерва и основными височными сосудистыми аркадами (рис. 1.2), имеет диаметр около 5,5 мм [6]. От периферической сетчатки макула отличается тем, что фоторецепторы в ней представлены преимущественно колбочками, а ганглионарный слой состоит из нескольких слоёв клеток. В макуле выделяют несколько зон: фовеа, парафовеа и перифовеа.

    В центре макулы располагается ямка, содержащая пигмент ксантофилл. Она носит название «фовеа» (жёлтое пятно) и состоит из тонкого дна, склона, который поднимается под углом 22° и утолщенного края (рис. 1.3). Наличие склона связано с латеральным смещением второго и третьего нейрона, а также с увеличением толщины базальной мембраны, которая достигает максимума на краю фовеа. Биомикроскопически край фовеа выглядит как овальный рефлекс от внутренней пограничной мембраны размером около 1500 мкм, что соответствует диаметру диска зрительного нерва. Наиболее чётко его видно у молодых людей. Тёмная окраска фовеа объясняется не только наличием ксантофилла в ганглионарных и биполярных клетках, но и тем, что сетчатка здесь наиболее истончена, и хориокапилляры через неё видны лучше.

    Фовеола, или дно центральной ямки, составляет 350 мкм в диаметре и всего 150 мкм в толщину(рис. 1.3). Она окружена капиллярными аркадами. Эти сосуды располагаются на уровне внутреннего ядерного слоя вокруг бессосудистой зоны окружностью 250-600 мкм. В глазу взрослого человека центральная ямка располагается примерно в 4 мм височнее и в 0,8 мм выше центра диска зрительного нерва [6], однако возможны индивидуальные различия.

    Фовеола состоит из плотно упакованных колбочек. Её высокие метаболические потребности обеспечиваются непосредственно пигментным эпителием и через отростки глии, чьи ядра лежат более периферично, ближе к перифовеальным сосудистым аркадам. Толщина внутренней пограничной мембраны, а также сила витреального прикрепления наиболее сильны в области фовеолы. В норме при офтальмоскопии виден крошечный яркий рефлекс от дна центральной ямки.

    Преобладающими фоторецепторами фовеолы являются колбочки. Концентрация колбочек в этой области является результатом центростремительного смещения первого нейрона (непосредственно колбочек) и центробежного смещения второго и третьего нейронов (биполяров и ганглионарных клеток) во время формирования фовеа. Колбочки окружены отростками глиальных клеток Мюллера, которые концентрируются непосредственно под внутренней пограничной мембраной. Их ядра в основном формируют внутренний ядерный слой сетчатки.

    Парафовеа – это пояс шириной 0,5 мм, окружающий фовеальный край (рис. 1.3). На этом расстоянии от центра сетчатка характеризуется правильным расположением слоёв, которые включают 4-6 слоёв ганглионарных клеток и 7-10 слоёв биполярных клеток [9].

    Перифовеа окружает парафовеа как кольцо шириной приблизительно 1,5 мм (рис. 1.3)и представлена несколькими слоями ганглионарных клеток и 6 слоями биполяров [9].

    Важнейшей структурой заднего сегмента глаза является диск зрительного нерва, который представляет собой начальный отдел зрительного нерва. Формирование зрительного нерва (II черепно-мозговой нерв, п. opticus) происходит за счет удлиненных аксонов ганглиозных клеток сетчатки. Зрительный нерв вместе с оболочками имеет толщину в среднем 3,5-4,0 мм и длину 35-55 мм. Различают несколько анатомических частей зрительного нерва(рис. 1.4):

    • внутриглазная и диск зрительного нерва;

    • внутриглазничная;

    • внутриканальцевая;

    • внутричерепная.

Во внутриглазной части зрительного нерва различают следующие зоны:

    • поверхностный слой нервных волокон, соответствующий уровню расположения мембраны Бруха;

    • преламинарная часть, лежащая в плоскости сосудистой оболочки;

    • часть зрительного нерва, соответствующая расположению решетчатой пластинки;

    • ретроламинарная часть, лежащая позади решетчатой пластинки.

    Внутриглазничная часть зрительного нерва имеет наибольшую длину 25-35 мм, и здесь нерв делает S-образный изгиб, что обеспечивает возможность движений глазного яблока без натяжения нерва.

    На большом протяжении зрительный нерв имеет три оболочки: твердую (tunica dura), паутинную (tunica arachnoidea) и мягкую (tunica pia) (рис. 1.5).

    В зрительном нерве волокна от разных частей сетчатки располагаются в определенном порядке. Аксоны ганглиозных клеток, отходящие от центральной области сетчатки, составляют папилло-макулярный пучок, который входит в височную часть дика зрительного нерва. Аксоны, идущие от ганглиозных клеток, расположенных назально и по периферии сетчатки, проникают в диск с носовой стороны. От периферии височной части сетчатки аксоны направляются в верхнюю и нижнюю части диска.

Читайте также:  Степени ожога сетчатки глаза

    Зрительные нервы обоих глаз в полости черепа соединяются над областью турецкого седла, образуя хиазму. В области хиазмы осуществляется частичный перекрест волокон зрительного нерва. Перекрещиваются волокна, идущие от внутренних (носовых) половин сетчатки, и не перекрещиваются волокна, идущие от наружных (височных) половин.

    После перекреста зрительные волокна образуют зрительные тракты (tractus opticus). В состав каждого тракта входят волокна от наружной половины сетчатки той же стороны и внутренней половины противоположной.

Для понимания гемодинамических нарушений сетчатки и зрительного нерва необходимо иметь четкое представление об особенностях их кровоснабжения.

    В процессе филогенеза сформировались два механизма доставки питательных веществ к сетчатке. Внутренние отделы сетчатки кровоснабжаются из системы центральной артерии сетчатки (ЦАС), а наружные – за счет хориокапилляров сосудистой оболочки. Капиллярная сеть ЦАС распространяется до уровня наружного ядерного слоя. Свободной от капилляров остаётся только центральная зона диметром 0,5 мм. Ретинальное кровообращение характеризуется низким кровотоком и высокой экстракцией кислорода. Сосуды сетчатки не имеют автономной иннервации и испытывают влияние в основном местных факторов, тем самым показывая эффективную саморегуляцию. В отличие от хориоидального кровообращения, ретинальные сосуды являются конечными артериями.

    Приблизительно 98% всего глазного кровотока приходится на сосудистую оболочку, причём 85% – на хориоидею, что делает ее самой богатой сосудами тканью в человеческом организме. Основной функцией хориоидеи является обеспечение питания ПЭС и наружных слоев сетчатки за счёт хориокапиллярного слоя. Хориоидея в свою очередь формируется вследствие разветвления задних коротких цилиарных артерий. Хориоидальная циркуляция характеризуется высокой скоростью кровотока (приблизительно 1400 мл / 100 г в мин.), низким извлечением кислорода из крови и низкой сосудистой сопротивляемостью. Хориоидальный кровоток в основном контролируется симпатической нервной системой и не имеет саморегуляции. Поэтому хориоидальные сосуды более восприимчивы к системным сосудистым изменениям, чем сосуды сетчатки.

    Особенностью строения хориокапилляров является их широкий просвет, позволяющий одномоментно вместить сразу несколько эритроцитов. Диаметр хориокапилляра превышает диаметр обычного капилляра в 3 раза, что обеспечивает очень интенсивный кровоток. Второй особенностью хориокапилляров является то, что эндотелиоциты хориокапилляров имеют фенестры величиной около 55-60 нм. Фенестры – это своеобразные «окошки» диаметром до 0,1 мкм. В результате толщина эндотелия хориокапилляров уменьшается. В зоне фенестры сохраняется лишь наружная и внутренняя цитоплазматические мембраны эндотелиоцита, это позволяет пропускать большие молекулы белка, что особенно важно для активного метаболизма.

    Кровоснабжение зрительного нерва в каждой анатомической области осуществляется определенными сосудами (рис. 1.6).

    Поверхность слоя нервных волокон диска зрительного нерва получает питательные вещества за счет ветвей центральной артерии сетчатки, таких как перипапиллярные артериолы, располагающиеся вокруг диска, и эпипапиллярные артериолы, лежащие на диске. Также в кровообращении диска зрительного нерва принимает участие препапиллярная ветвь от цилиоретинальной артерии. Кроме того, существуют многочисленные анастомозы с преламинарной областью и хориокапиллярами. Помимо этого, кровоснабжение диска осуществляется возвратными склеральными артериями, берущими свое начало из задних коротких цилиарных артерий.

    Капилляры диска зрительного нерва и сетчатки выстланы нефенестрированным слоем эндотелиальных клеток, но между эндотелиоцитами обнаруживаются межклеточные контакты. Такое строение обеспечивает барьер между тканью и кровью, не пропуская молекулы большого размера. Однако в области диска зрительного нерва гематоофтальмический барьер нарушается на границе между сосудистой оболочкой и диском зрительного нерва в преламинарной области.

    Преламинарная часть зрительного нерва получает питание от задних коротких цилиарных артерий, а также за счет сосудов хориоидеи.

    В области решетчатой пластинки кровоснабжение зрительного нерва осуществляется при помощи ветвей круга Цинна-Галлера, образованного задними короткими цилиарными артериями.

    Ретроламинарная часть получает кровь также от сосудов круга Цинна-Галлера и от хориоидальных артерий.

    Внутриглазничная и внутриканальцевая части зрительного нерва кровоснабжаются центральной артерией сетчатки, которая является ветвью глазной артерии. Еще одна ветвь глазной артерии – перихиазмальная артерия, питающая кровью внутричерепную часть зрительного нерва.

    Отток крови осуществляется через центральную вену сетчатки, которая образуется на диске зрительного нерва и получает венозные ветви от сетчатки и зрительного нерва. Центральная вена сетчатки впадает в глазничное венозное сплетение, отводящее кровь в верхнюю и нижнюю глазные вены и в пещеристую пазуху.

    Литература

    1. Алпатов С.А., Щуко А.Г., Урнева Е.М. и др.Возрастная макулярная дегенерация: руководство. – М.: ГЭОТАР-Медиа, 2010 – 214 с.

    2. Вит В.В.Строение зрительной системы человека. – Одесса: Астропринт, 2003. – 664 с.

    3. Воложин А.И., Порядин Г.В.Патологическая физиология. – М.: Медицина, 2006. – 304 с.

    4. Кацнельсон Л.А., Форофонова Т.Н., Бунин А.Я. Сосудистые заболевания глаз. – М.: Медицина, 1990. – 270 с.

    5. Краснов М.Л.Элементы анатомии в клинической практике офтальмолога. – М.: Медгиз, 1952. – 62 с.

    6. Hogan M.J., Alvarado J.A., Wendell J.E. Histology of the human eye. – Philadelphia: Saunders, 1971. – 498 p.

    7. L´Esperance F.A. Ophthalmic Lasers. Photocoagulation, Photoradiation and Surgery. – St. Louis: Mosby, 1989. – 1553 p.

    8. Schubert H.Structure and function neural retina // Ophthalmology / Eds M. Yanoff, J. Duker. – St. Louis: Mosby, 1999. – P. 414-467.

    9. Spitznas M.Anatomical features of the human macula // Current diagnosis and management of retinal disorders / Ed. F.A. L´Esperance. – St. Louis: CV Mosby, 1977. – P. 14-46.

Источник