Свет в глазах сетчатка

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.

Запрос «Ретина» перенаправляется сюда; о названии особого вида ЖК-дисплеев см. Retina.

Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Строение[править | править код]

Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.

Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:

  • пигментного,
  • фотосенсорного,
  • наружной пограничной мембраны,
  • наружного зернистого слоя,
  • наружного сплетениевидного слоя,
  • внутреннего зернистого слоя,
  • внутреннего сплетениевидного слоя,
  • ганглионарных клеток,
  • слоя волокон зрительного нерва,
  • внутренней пограничной мембраны.

Строение сетчатки человека[править | править код]

Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.

Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.

Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.

диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.

На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.

Микроскопическое строение[править | править код]

Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено

См. Пигментный эпителий сетчатки

В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.

Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.

Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).

Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.

Читайте также:  Отслоение сетчатки в центре глаза

Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.

Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

Заболевания[править | править код]

Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:

  • Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
  • Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
  • Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
  • Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
  • Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
  • И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
  • Ретинобластома — злокачественная опухоль сетчатки.
  • Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
  • Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.

Литература[править | править код]

  • Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.

Примечание[править | править код]

Ссылки[править | править код]

  • Строение сетчатки. // Проект «Eyes for me».

Источник

Гурко Т.С., Гойдин А.П.

    Актуальность

Солнечный свет, являясь источником всего живого на Земле, а также первопричиной появления самого органа зрения, при определенных условиях может вызывать опасные необратимые повреждения глаз [6]. Солнечная макулопатия или световая ретинопатия представляет собой повреждение макулы световым излучением длинноволнового видимого, ультрафиолетового (УФ) и инфракрасного (ИК) спектра высокой интенсивности [2]. Возникновение ее связано с длительным наблюдением солнечного затмения без средств защиты, а иногда с продолжительным прямым взглядом на солнце или отраженным солнечным светом. Органические повреждения глаз неионизирующими электромагнитными излучениями опти­ческого диапазона могут возникнуть и в результате воздействия созданных человеком светотехнических устройств: дуговые прожекторы, ртутно-кварцевые лампы, электро- и газосварочные аппараты, ксеноновые лампы высокого давления, медицинские лазерные скальпели, офтальмокоагуляторы и др.

    В последние годы выяснилось, что даже современные офтальмоскопические приборы и операционные микроскопы, особенно оснащенные галогенными осветительными лампами и волоконной оптикой, могут при длительном использовании вызывать повреждения глазного дна у больных, подвергающихся офтальмоскопическому исследованию или хирургической помощи [5]. Фотоповреждения сетчатки могут возникнуть у детей после посещения лазерных шоу, игр с лазерными указками [4]. Неблагоприятное воздействие солнечной радиации на зрительный орган исследовалось долгое время, и случаи солнечной ретинопатии сообщались уже с XVIII в. [2]. Солнечное излучение, достигающее поверхности Земли, имеет спектр, простирающийся от 250 до 1800 нм со значительными провалами в ИК-области на длинах волн 900, 1100, 1400 нм, объясняющимися поглощением этих длин волн содержащейся в атмосфере водой. В его составе около 2% ультрафиолетового, 40% видимого и 58% инфракрасного излучения. УФ-излучение с длиной волны короче 250 нм и ИК-излучение с длиной волны более 1400 нм генерируется различными искусственными источниками света и также может быть потенциальной причиной повреждения органа зрения [3].

Читайте также:  Модель глаза изображение на сетчатке

    В обычной жизни повреждения сетчатки солнечным светом не происходит, так как глаз защищен эффективной антиоксидантной системой: пигменты типа кинуреинов, которые локализуются в хрусталике, меланин в сосудистой оболочке и сетчатке поглощают окружающее излучение и рассеивают повреждающую энергию. Во время солнечного затмения в глаз поступает интенсивный пучок света голубой части спектра (400-500 нм), при этом конечный продукт фотолиза родопсина (ретиналь) выступает в качестве фотосенсибилизатора, катализируя процесс передачи энергии фотонов молекуле кислорода с образованием синглетного кислорода, вызывающего патологические процессы окисления мембран фоторецепторов [1].

    Световое излучение способно вызвать повреждение только в той ткани, в которой оно поглощается. Своеобразие органа зрения заключается в том, что в его составе имеются прозрачные для видимого света оптические среды, которые фокусируют его на глазном дне [6]. Проведенные эксперименты на крысах показали, что клеточное проявление солнечной ретинопатии – это нейронный апоптоз, сопровождаемый глиоваскулярными нарушениями [6-8]. Michaelides М. и соавт. установили, что макулярные изменения вследствие «ретинопатии затмения» не сопровождаются стойкой утратой зрения [10, 11]. Эффект воздействия излучения на глазное дно определяется слоем пигментного эпителия, который по сравнению с другими оболочками имеет наиболее высокий коэффициент абсорбции (свыше 60%) для видимого диапазона.

    Гистологические исследования доказали большую восприимчивость ретинального пигментного эпителия и наружных сегментов слоя фоторецепторов к солнечному поражению [5]. Описаны два механизма повреждающего действия УФ-излучения на ткани глаза: термический и фотохимический. При термическом механизме коротковолновые и видимые лучи, подвергаясь преломлению в прозрачных средах глаза, фокусируются на сетчатке, при этом концентрируемая световая энергия достаточна для коагуляции белков за время мигательного рефлекса. Фотохимический механизм реализуется в виде изменений мембран фоторецепторов и нарушений функций пигментного эпителия за счет избыточной абсорбции солнечной радиации меланином [1, 11].

    Цель

    Проанализировать световые повреждения сетчатки у пациентов по данным ТФ ФГАУ «МНТК «МГ» им. акад. С.Н. Федорова».

    Материал и методы

    В нашу клинику с 01.04.2015 г. по 14.12.2016 г. обратилось 18 пациентов с диагнозом солнечной (световой) ретинопатии, из них 5 мужчин и 13 женщин в возрасте от 12 до 37 лет (средний возраст – 24,7 года). 11 пациентов обратилось после пристального взгляда на солнце 20 марта 2015 г. во время солнечного затмения с жалобами на «пятно», затуманивание, у 3-х пациентов – искажение предметов, трудности при чтении, у 4-х пациентов – снижение зрения. Сроки обращений – от 2-х недель до 9 мес. У одного пациента снизилось зрение после засвета диодным фонарем в течение 10 сек. У шести пациентов появление «пятна» и тумана после длительного взгляда на солнце без средств защиты. Всем пациентам проведено комплексное офтальмологическое обследование, включающее визометрию, компьютерную периметрию на приборе Humphrey Field Analyzer (HFA 30-2), офтальмоскопию глазного дна с помощью линзы Гольдмана, оптическую когерентную томографию. 3 пациентам выполнена паттерн-ЭРГ.

    Pезультаты

    Средняя острота зрения при обращении составила 0,86. 6 пациентов получали лечение по месту жительства, остальные не лечились. У 2 пациентов на глазном дне в фовеолярной области определялись патологические рефлексы, дисперсия пигмента. У 7-и пациентов в макулярной зоне точечный очаг с четкими контурами и с дефектом в пигментном эпителии. У 2 пациентов – пастозность, снижение фовеолярного и макулярного рефлексов, у 4 пациентов – на глазном дне изменений не обнаружено. Субъективно больные жаловались на положительную микроскотому, которая не выявлялась при периметрии, но отмечалась пациентами при чтении и обнаруживалась на сетке Амслера. 4 пациента жаловались на снижение зрения. На компьютерной периметрии HFA 30-2 патогноманичных изменений не было.

    На ОКТ обнаружен ламеллярный дефект в проекции наружных слоев и пигментном эпителии сетчатки у 2-х пациентов – на обоих глазах, у 16 пациентов – на одном глазу, хотя солнечная макулопатия чаще носит билатеральный характер, а степень поражения сетчатки, и, следовательно, ОКТ-изображения варьируют в зависимости от интенсивности и продолжительности солнечной экспозиции [2]. Bechmann M. и его коллеги были первыми, кто описал структурные поражения сетчатки при солнечной макулопатии, используя ОКТ [4, 7, 8].

Читайте также:  Сетчатка глаза чем опасна

Всем пациентам рекомендовано лечение: нестероидное противовоспалительное средство (НПВС) в каплях (неванак) в течение 10 дней, эмоксипин – 1 мес., препараты с лютеином в течение 2-3 мес. 2 пациентам назначены мочегонные средства. Явка на контрольный осмотр через 1-3 мес. При контрольном осмотре все пациенты отмечали улучшение зрения (средняя острота зрения повысилась до 0,93), уменьшение или исчезновение пятна, отсутствие искажений. В фовеа определялись крапчатость и пятна депигментации или красновато-оранжевые очажки с четко очерченными контурами, напоминающими разрывы сетчатки. ОКТ показало уменьшение ламеллярного дефекта в проекции наружных слоев сетчатки и пигментного эпителия сетчатки.

    Клинический пример: пациентка Б., 1984 г.р., обратилась 22.06.2015 г. с диагнозом: солнечная макулопатия OS; миопия слабой степени OU после солнечного затмения 20 марта 2015 г. Жалобы предъявляла на пятно перед OS, трудности при чтении, метаморфопсии после наблюдения в течение 3-4 минут за солнечным затмением без солнцезащитных очков.

    При офтальмологическом обследовании:

    Vis OD 0,2 sph -1,5=0,9; Vis OS 0,2 sph -1,5=0,9.

    Порог электрической чувствительности: OD=90 мка; OS=90 мка.

    Электрическая лабильность: OD=38; OS=37.

    ВГД OD 16,3 мм рт.ст.; ВГД OS 15,3 мм рт.ст.

    На глазном дне в макулярной зоне левого глаза – дисперсия пигмента. Компьютерная периметрия на HFA 30-2 без особенностей на обоих глазах (рис. 1а, б). На сетке Амслера перед левым глазом положительная микроскотома (рис. 2а).

    По данным литературы при регистрации паттерн-ЭРГ на высокочастотные пространственные стимулы (20′) установлено снижение компонента Р50, что характерно для повреждений дистальных слоев сетчатки преимущественно в фовеальной области, авторы отмечают отсутствие изменений амплитудно-временных показателей компонента Р50-N95, фиксирующего сохранность ганглиозных клеток сетчатки [5].

    После солнечного затмения у данной пациентки проведено паттерн-ЭРГ с пространственным стимулом 48′. Отмечено значительное увеличение амплитуды компонента Р50-N95 левого глаза, что указывает на раздражение ганглиозных клеток сетчатки. Латентность пика Р50 в пределах нормы (рис. 3а). Величина амплитуды пика Р50 OD=11,1 µm; OD=9,84 µm; OS=18,3 µm; OS=17,5 µm; (N 2,0-10,0 µm).

    При проведении оптической когерентной томографии (ОКТ) определяется ламеллярный дефект в проекции наружных слоев сетчатки и пигментного эпителия сетчатки (высота дефекта – 59 µm, ширина – 56 µm), диффузное снижение рефлективности сетчатки в фовеа левого глаза (рис. 4а), на правом глазу – без изменений (рис. 4б).

    Пациентке рекомендовано лечение: в левый глаз капли неванак по 1х3 р/д 10 дней; эмоксипин в каплях по 1х3 р/д 1 мес.; витрум-вижн форте по 1х2 р/д 3 мес. При повторном обследовании через 2,5 мес. (02.09.2025 г.) пациентка субъективно отмечает перед левым глазом нежное полупрозначное пятно, при чтении не мешает. Острота зрения прежняя. На сетке Амслера фиксирует полупрозрачную микроскотому рядом с фовеа (рис. 2б). Компьютерные поля на HFA 30-2 без изменений. При регистрации паттерн-ЭРГ отмечается положительная динамика: левый глаз – уменьшение амплитуды компонента Р50-N95 до нормальных значений (рис. 3б), на ОКТ – уменьшение ламеллярного дефекта (высота дефекта – 24 µm, ширина – 50 µm) (рис. 4в). Рекомендован динамический осмотр через 3 мес.

    Случайное обнаружение подобных изменений на глазном дне у лиц с высокими зрительными функциями спустя месяцы или годы требует проведения дифференциальной диагностики с макулярными дистрофиями, токсическими макулопатиями, идиопатическими разрывами сетчатки [1].

    Выводы

    1. При световых повреждениях сетчатки происходит преимущественное повреждение ее наружных слоев и пигментного эпителия сетчатки. ОКТ позволяет идентифицировать поражения у больных без изменений на глазном дне, нормальными остротой и полем зрения.

    2. В сомнительных случаях основным методом для дифференциальной диагностики является ОКТ с возможным проведением флуоресцентной ангиографии в сложных ситуациях.

    3. В отдаленные сроки остается ламеллярный дефект в наружных слоях и пигментном эпителии сетчатки, не сопровождающийся дегенеративными изменениями.

    4. Не только «солнечное затмение» может стать причиной поражения сетчатки, но и обычные бытовые осветительные приборы.

    5. Изменения на электроретинограмме (амплитуды компонента Р50-N95 на паттерн ЭРГ) требуют дальнейшего изучения и наблюдения.

Источник