Строма роговицы что это

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2019;
проверки требует 41 правка.

Рогови́ца, роговая оболочка (лат. cornea)[2] — передняя наиболее выпуклая прозрачная часть фиброзной оболочки глазного яблока, одна из светопреломляющих сред глаза.

Строение[править | править код]

Основное вещество роговицы состоит из прозрачной соединительнотканной стромы и роговичных телец. Спереди и сзади стромы прилегают две пограничные пластинки. Передняя пластинка, или боуменова оболочка, является производным основного вещества роговицы. Задняя, или десцеметова, оболочка является производным эндотелия, покрывающего заднюю поверхность роговицы, а также всю переднюю камеру глаза. Спереди роговица покрыта многослойным эпителием. В роговице человеческого шесть слоёв:

  1. передний эпителий,
  2. передняя пограничная мембрана (Боуменова),
  3. основное вещество роговицы, или строма
  4. слой Дюа — тонкий высокопрочный слой, открытый в 2013 году,
  5. задняя пограничная мембрана (Десцеметова оболочка),
  6. задний эпителий, или эндотелий роговицы.

Роговица у человека занимает примерно 1/6[3] площади наружной оболочки глаза. Она имеет вид выпукло-вогнутой линзы, обращённой вогнутой частью назад. Диаметр роговицы варьируется в очень незначительных пределах и составляет 10±0,56 мм, однако вертикальный размер обычно на 0,5—1 мм меньше горизонтального. Толщина роговицы в центральной части 0,52—0,6 мм, по краям — 1—1,2 мм. Радиус кривизны роговицы составляет около 7,8 мм.

Диаметр роговицы незначительно увеличивается с момента рождения до 4 лет и с этого возраста является константой. То есть рост размеров глазного яблока опережает возрастное изменение диаметра роговицы. Поэтому y маленьких детей глаза кажутся больше, чем y взрослых.

У многих млекопитающих (кошек, собак, волков и других хищников)[4] Боуменова мембрана отсутствует.[5]

В роговице в норме нет кровеносных и лимфатических сосудов[2], питание роговицы осуществляется омывающими её водянистой влагой передней камеры глаза (задняя поверхность роговицы) и слёзной жидкостью (передняя наружная поверхность роговицы). Место перехода роговицы в склеру называется лимбом роговицы.

Физиология[править | править код]

Показатель преломления вещества роговицы 1,376, преломляющая сила — 40 дптр.

В норме у человека роговица смачивается слёзной жидкостью при моргании.

Заболевания роговицы[править | править код]

  • Кератит
  • Кератоконъюнктивит
  • Кератоконус
  • Кератоглобус
  • Кератомаляция
  • Буллёзная кератопатия
  • Дистрофии роговицы
  • Ленточная кератопатия
  • Ксерофтальмия
  • Пеллюцидная краевая дегенерация
  • Вторичная эктазия роговицы

Роль роговицы при доставке лекарств в глаз[править | править код]

Благодаря своей многослойной структуре, роговица является малопроницаемой по отношению даже к малым молекулам лекарств. Некоторые вещества, содержащиеся в составе глазных капель, могут усиливать проникновение лекарств через роговицу. Такие вещества принято называть усилителями проницаемости. Примерами усилителей проницаемости являются циклодекстрины, ЭДТА, поверхностно-активные вещества и желчные кислоты.[6]

  • Роговица при просмотре щелевой лампой: cлева белесоватая дугообразная — толща роговицы

  • Строение роговицы

См. также[править | править код]

  • Пахиметрия
  • Глазная тонометрия
  • Контактная линза
  • Кератомилёз
  • Кератотомия
  • Лазерная коррекция зрения
  • Кератопластика
  • KERA
  • Кератин 3, Кератин 12
  • Кератансульфаты
  • Мигательная перепонка

Примечания[править | править код]

  1. 1 2 Foundational Model of Anatomy
  2. 1 2 Синельников Р. Д., Синельников Я. Р., Синельников А. Я. Атлас анатомии человека. Учебное пособие. / В 4 т. Т. 4, 7-е изд. перераб. // М.: РИА Новая волна / Издатель Умеренков. — 2010. — 312 с., ил. ISBN 978-5-7864-0202-6 / ISBN 978-5-94368-053-3. (С. 245-246).
  3. ↑ Глазные болезни. Основы офтальмологии / Под редакцией профессора В. Г. Копаевой. — М.: ОАО «Издательство «Медицина», 2012. — С. 37. — ISBN 978-5-225-10009-4.
  4. Merindano Encina, María Dolores; Potau, J. M.; Ruano, D.; Costa, J.; Canals, M. A comparative study of Bowman’s layer in some mammals Relationships with other constituent corneal structures (англ.) // European Journal of Anatomy : journal. — 2002. — Vol. 6, no. 3. — P. 133—140.
  5. Dohlman, Claes H.; Smolin, Gilbert; Azar, Dimitri T. Smolin and Thoft’s The cornea: scientific foundations and clinical practice (англ.). — Hagerstwon, MD: Lippincott Williams & Wilkins (англ.)русск., 2005. — ISBN 0-7817-4206-4.
  6. Vitaliy V. Khutoryanskiy, Fraser Steele, Peter W. J. Morrison, Roman V. Moiseev. Penetration Enhancers in Ocular Drug Delivery (англ.) // Pharmaceutics. — 2019/7. — Vol. 11, iss. 7. — P. 321. — doi:10.3390/pharmaceutics11070321.

Литература[править | править код]

  • Каспаров А. А. Роговица // Большая медицинская энциклопедия, 3-е изд. — М.: Советская энциклопедия. — Т. 22.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 октября 2018;
проверки требуют 5 правок.

Движение кератоцитов к поврежденному участку

У этого термина существуют и другие значения, см. Кератоцит.

Кератоциты роговицы — особые фибробласты, содержащиеся в строме роговой оболочки глаза. Строма, образованная по большей части коллагеновыми волокнами и другими элементами внеклеточного матрикса, составляет 85-90 % толщины роговицы, и кератоциты играют важную роль в поддержании её прозрачности и заживлении повреждений. В здоровой роговице кератоциты находятся в спокойном состоянии, а при нарушении её целостности активируются и приступают к деятельности по починке повреждений. Часть кератоцитов при повреждении совершает апоптоз.[1] Сбой процесса заживления может приводить к помутнению роговицы, а некроз и повышенный апоптоз — играть роль в дистрофических заболеваниях роговицы и при кератоконусе, кроме того, апоптоз наблюдается при хирургических операциях глаза. В связи с этим функции кератоцитов активно изучаются.

Происхождение и функции кератоцитов роговицы[править | править код]

Кератоциты образуются при развитии организма из краниальной популяции клеток нервного гребня и затем мигрируют в мезенхиму. У некоторых видов происходит две волны миграции: одна порождает эндотелий роговицы, вторая вторгается в уже существующую, но еще не содержащую клеток строму, выработанную эпителием; у других видов обе популяции образуются одной волной миграции. В строме кератоциты начинают активно синтезировать коллаген разных типов (I, V, VI) и кератансульфат. К моменту первого открытия глаз число пролиферирующих кератоцитов падает практически до нуля, и они переходят в спокойное состояние.[2]

По окончании развития глаза в строме образуется согласованная сеть кератоцитов, объединенных дендритными отростками.[3] Кератоциты в состоянии покоя синтезируют так называемые кристаллины — молекулы, изначально более известные благодаря своей роли в хрусталике глаза. Как и в хрусталике, кристаллины стромы предположительно позволяют поддерживать оптимальную прозрачность и рефракцию света в роговице,[4] а также составлять часть антиоксидантной защиты роговицы.[5] Описана экспрессия кератоцитами человека таких кристаллинов, как ALDH1A1, ALDH3A1,[6]ALDH2 и TKT (транскетолаза). Для разных видов характерны разные наборы производимых в строме кристаллинов.[7] Выделяемый в толщу стромы кератансульфат может играть несколько ролей, в том числе роль динамического буфера, поддерживающего оптимальную гидрацию;[8] при генетическом нарушении его синтеза развивается пятнистая дистрофия роговицы.[9]

Читайте также:  Эрозия роговицы глаза у детей

Авторы одного исследования сообщают о том, что кератоциты конвертируют производимый в роговице[10] профермент плазминоген в ангиостатин; возможно, это является одним из механизмов сдерживания васкуляризации роговицы.[11]

По данным одного исследования, кератоциты производят также супероксид.[12]

По данным одного исследования, число кератоцитов в роговице человека в среднем составляет 20500 клеток на мм³ либо 9600 в колонке стромы площадью сечения 1 мм², причем наибольшая плотность размещения клеток отмечена в верхних 10 % стромы. С возрастом число кератоцитов снижается, примерно на 0,45 % в год.[13]

При повреждении роговицы, часть кератоцитов совершают апоптоз под воздействием выделяемых верхним слоем молекул.[1] Исследования приписывают значительную роль в инициации апоптоза цитокинам IL1-alpha и TNF-alpha. Другие кератоциты в ответ на те же сигналы активируются, пролиферируют, синтезируют MMP, способствующие ремоделингу ткани. Такие кератоциты в разных источниках называют либо активными кератоцитами, либо фибробластами, либо говорят об их преобразовании в «ремонтный фенотип» (англ. repair phenotype). При более тяжёлых повреждениях либо на поздних стадиях заживления часть кератоцитов превращается в миофибробласты, активно секретирующие ряд элементов внеклеточного матрикса. Показано, что это происходит под воздействием TGF-beta. При восстановлении базальной мембраны, поступление TGF-beta в строму падает, и миофибробласты исчезают. Активированные кератоциты какое-то время продолжают переделку внеклеточного матрикса, самостоятельно выделяя IL1-alpha для поддержания своего «ремонтного фенотипа».[14]

Интересно, что и в разреженной культуре кератоцитов эти клетки превращаются в миофибробласты без добавления TGF-бета, вероятно, выделяя этот фактор самостоятельно из-за потери контакта с другими кератоцитами.[15]:133

Роли апоптоза кератоцитов, как «спокойных», так и активированных, уделяется особое внимание.[1] В обычной здоровой роговице запрограммированная клеточная смерть кератоцитов почти не наблюдается, однако сразу после повреждения верхнего её слоя (эпителия) наблюдается немедленный апоптоз кератоцитов, расположенных под местом повреждения.[16] Существует гипотеза, объясняющая такую быструю реакцию необходимостью предотвратить распространение инфекции, поскольку клеткам иммунной системы требуется до нескольких часов для мобилизации в роговицу.[17] При нормальном ходе событий, через некоторое время митоз близлежащих кератоцитов способствует восполнению их количества.[2] Апоптоз кератоцитов отмечен при хирургических вмешательствах, в том числе кератотомии и лазерной хирургии роговицы,[18] и, возможно, играет роль в развитии послеоперационных осложнений.

Клиническое значение[править | править код]

Нарушение синтеза кератансульфатов привело к скоплению патологического материала в кератоците.

Кератоциты могут играть роль в патогенезе различных форм дистрофии роговицы. По данным нескольких исследований, их реакции разительно отклоняются от нормы при кератоконусе. При этом заболевании отмечается их апоптоз вдалеке от какого-либо повреждения эпителия, в связи с этим возникла гипотеза о том, что кератоконус обусловлен избыточным апоптозом кератоцитов.[20]

По данным одного исследования, в кератоцитах, изъятых при кератопластике у больных кератоконусом, значительно снижен уровень мРНК одной из форм алкогольдегидрогеназы,[19] также отмечается сниженный синтез супероксиддисмутазы 3.

Данные о количестве кератоцитов при кератоконусе разнятся: сообщается как о пониженном,[21][22][23][24][25] так и о повышенном их числе.[26] Как при кератоконусе, так и в здоровых глазах ношение контактных линз ассоциировано со сниженным числом этих клеток.[21][26]

Реакция на лекарства[править | править код]

Ряд исследований демонстрирует гибель кератоцитов под воздействием хинолонов,[27] причём больше клеток гибнет при нарушенной целостности эпителиального слоя роговицы.[28] Другой класс средств, также применяемый для борьбы с роговичными инфекциями, аминогликозиды, наносит лишь незначительный ущерб кератоцитам при сравнении с хинолонами.[29]

Существуют сообщения о случаях перфорации роговицы, предположительно ассоциированных с топическим применением хинолонов.[30] В одном исследовании говорится, что хинолоны индуцируют экспрессию матриксных металлопротеиназ (MMP1, MMP2, MMP8, MMP9).[31]

Альтернативные названия[править | править код]

  • «Кератобласты» (этот термин также используется для описания прекурсоров эпидермальных кератиноцитов) (англ. keratoblasts)
  • «Фибробласты роговицы», «роговичные фибробласты» (англ. corneal fibroblasts)
  • «Стромальные фиброциты роговицы», «роговичные стромальные фиброциты» (англ. corneal stromal fibrocytes)
  • «Мезенхимально-порожденные роговичные клетки», «клетки роговицы мезенхимального происхождения» (англ. corneal mesenchymal-derived cells)
  • «Роговичные стромальные клетки», «клетки стромы роговицы» (англ. corneal stromal cells)
  • (устар.) «Роговичные тельца», «роговичные корпускулы» (англ. corneal corpuscles)

См. также[править | править код]

  • VSX1 — при повреждениях роговицы, рост экспрессии в кератоцитах;

Литература[править | править код]

  • Обзоры:
    • Кератоцит: West-Mays J. A., Dwivedi D. J. The keratocyte: corneal stromal cell with variable repair phenotypes (англ.) // Int. J. Biochem. Cell Biol. (англ.)русск. : journal. — 2006. — Vol. 38, no. 10. — P. 1625—1631. — doi:10.1016/j.biocel.2006.03.010. — PMID 16675284.
    • Роль апоптоза: Wilson S. E., Chaurasia S. S., Medeiros F. W. Apoptosis in the initiation, modulation and termination of the corneal wound healing response (англ.) // Exp. Eye Res. : journal. — 2007. — September (vol. 85, no. 3). — P. 305—311. — doi:10.1016/j.exer.2007.06.009. — PMID 17655845.
  • Сборники, книги:
    • Возможная роль апоптоза кератоцитов в патогенезе кератоконуса: Кератоконус (этиология, патогенез, медикаментозное лечение): Учебное пособие — Севостьянов Е. Н., Горскова Е. Н., Экгардт В. Ф. Челябинск: УГМАДО, 2005. — 32 с.

Примечания[править | править код]

  1. 1 2 3 Wilson S. E., Chaurasia S. S., Medeiros F. W. Apoptosis in the initiation, modulation and termination of the corneal wound healing response (англ.) // Exp. Eye Res. : journal. — 2007. — September (vol. 85, no. 3). — P. 305—311. — doi:10.1016/j.exer.2007.06.009. — PMID 17655845.
  2. 1 2 West-Mays J. A., Dwivedi D. J. The keratocyte: corneal stromal cell with variable repair phenotypes (англ.) // Int. J. Biochem. Cell Biol. (англ.)русск. : journal. — 2006. — Vol. 38, no. 10. — P. 1625—1631. — doi:10.1016/j.biocel.2006.03.010. — PMID 16675284.
  3. Müller L. J., Pels L., Vrensen G. F. Novel aspects of the ultrastructural organization of human corneal keratocytes (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 1995. — December (vol. 36, no. 13). — P. 2557—2567. — PMID 7499078. Архивировано 12 января 2013 года. Архивировано 12 января 2013 года.
  4. Jester J. V. Corneal crystallins and the development of cellular transparency (англ.) // Semin. Cell Dev. Biol. (англ.)русск. : journal. — 2008. — April (vol. 19, no. 2). — P. 82—93. — doi:10.1016/j.semcdb.2007.09.015. — PMID 17997336.
  5. Lassen N., Black W. J., Estey T., Vasiliou V. The role of corneal crystallins in the cellular defense mechanisms against oxidative stress (англ.) // Semin. Cell Dev. Biol. (англ.)русск. : journal. — 2008. — April (vol. 19, no. 2). — P. 100—112. — doi:10.1016/j.semcdb.2007.10.004. — PMID 18077195.
  6. Lassen N., Pappa A., Black W. J., Jester J. V., Day B. J., Min E., Vasiliou V. Antioxidant function of corneal ALDH3A1 in cultured stromal fibroblasts (англ.) // Free Radic. Biol. Med. (англ.)русск. : journal. — 2006. — November (vol. 41, no. 9). — P. 1459—1469. — doi:10.1016/j.freeradbiomed.2006.08.009. — PMID 17023273.
  7. ↑ Список известных роговичных кристаллинов и их аналогов в хрусталике глаза — из обзора в PMID 17997336
  8. Funderburgh J. L. Keratan sulfate: structure, biosynthesis, and function (англ.) // Glycobiology : journal. — 2000. — October (vol. 10, no. 10). — P. 951—958. — PMID 11030741.
  9. ↑ MACULAR DYSTROPHY, CORNEAL, 1; MCDC1 (недоступная ссылка) — пятнистая дистрофия роговицы. Данные генетических и патоанатомических исследований в каталоге OMIM.
  10. ↑ Extrahepatic synthesis of plasminogen in the human cornea is up-regulated by interleukins-1alpha and −1beta. Twining SS, Wilson PM, Ngamkitidechakul C. Biochem J. 1999 May 1;339 (Pt 3):705-12. PMID 10215610
  11. ↑ Differential conversion of plasminogen to angiostatin by human corneal cell populations. Warejcka DJ, Vaughan KA, Bernstein AM, Twining SS. Mol Vis. 2005 Oct 20;11:859-68. PMID 16270025
  12. O’Brien W. J., Heimann T., Rizvi F. NADPH oxidase expression and production of superoxide by human corneal stromal cells (англ.) // Mol. Vis. (англ.)русск. : journal. — 2009. — Vol. 15. — P. 2535—2543. — PMID 19997580.
  13. Patel S., McLaren J., Hodge D., Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2001. — February (vol. 42, no. 2). — P. 333—339. — PMID 11157863. Архивировано 13 января 2013 года. Архивировано 13 января 2013 года.
  14. ↑ Изображение процесса заживления роговицы с участием кератоцитов из обзора PMID 17655845
  15. Gabbiani, Giulio; Chaponnier, Christine; Alexis Desmouliere. Tissue Repair, Contraction and the Myofibroblast (Biotechnology Intelligence Unit) (англ.). — Berlin: Springer, 2006. — ISBN 0-387-33649-4.
  16. Wilson S. E., He Y. G., Weng J., Li Q., McDowall A. W., Vital M., Chwang E. L. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing (англ.) // Exp. Eye Res. : journal. — 1996. — April (vol. 62, no. 4). — P. 325—327. — doi:10.1006/exer.1996.0038. — PMID 8795451.
  17. Wilson S. E., Pedroza L., Beuerman R., Hill J. M. Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes (англ.) // Exp. Eye Res. : journal. — 1997. — May (vol. 64, no. 5). — P. 775—779. — doi:10.1006/exer.1996.0266. — PMID 9245908.
  18. Erie J. C., McLaren J. W., Hodge D. O., Bourne W. M. Long-term corneal keratoctye deficits after photorefractive keratectomy and laser in situ keratomileusis (англ.) // Trans Am Ophthalmol Soc : journal. — 2005. — Vol. 103. — P. 56—66; discussion 67—8. — PMID 17057788. Архивировано 12 октября 2008 года. Архивная копия от 12 октября 2008 на Wayback Machine
  19. 1 2 Mootha V. V., Kanoff J. M., Shankardas J., Dimitrijevich S. Marked reduction of alcohol dehydrogenase in keratoconus corneal fibroblasts (англ.) // Mol. Vis. (англ.)русск. : journal. — 2009. — Vol. 15. — P. 706—712. — PMID 19365573.
  20. Kim W. J., Rabinowitz Y. S., Meisler D. M., Wilson S. E. Keratocyte apoptosis associated with keratoconus (неопр.) // Exp. Eye Res.. — 1999. — November (т. 69, № 5). — С. 475—481. — doi:10.1006/exer.1999.0719. — PMID 10548467.
  21. 1 2 Mocan M. C., Yilmaz P. T., Irkec M., Orhan M. In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus (англ.) // Curr. Eye Res. (англ.)русск. : journal. — 2008. — November (vol. 33, no. 11). — P. 933—939. — doi:10.1080/02713680802439219. — PMID 19085375.
  22. Erie J. C., Patel S. V., McLaren J. W., Nau C. B., Hodge D. O., Bourne W. M. Keratocyte density in keratoconus. A confocal microscopy study(a) (англ.) // Am. J. Ophthalmol. (англ.)русск. : journal. — 2002. — November (vol. 134, no. 5). — P. 689—695. — PMID 12429244.
  23. Niederer R. L., Perumal D., Sherwin T., McGhee C. N. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2008. — July (vol. 49, no. 7). — P. 2964—2970. — doi:10.1167/iovs.07-0968. — PMID 18579760. (недоступная ссылка)
  24. Ku J. Y., Niederer R. L., Patel D. V., Sherwin T., McGhee C. N. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus (англ.) // Ophthalmology : journal. — 2008. — May (vol. 115, no. 5). — P. 845—850. — doi:10.1016/j.ophtha.2007.04.067. — PMID 17825419.
  25. Hollingsworth J. G., Efron N., Tullo A. B. In vivo corneal confocal microscopy in keratoconus (неопр.) // Ophthalmic Physiol Opt. — 2005. — May (т. 25, № 3). — С. 254—260. — doi:10.1111/j.1475-1313.2005.00278.x. — PMID 15854073. (недоступная ссылка)
  26. 1 2 Weed K. H., MacEwen C. J., Cox A., McGhee C. N. Quantitative analysis of corneal microstructure in keratoconus utilising in vivo confocal microscopy (англ.) // Eye : journal. — 2007. — May (vol. 21, no. 5). — P. 614—623. — doi:10.1038/sj.eye.6702286. — PMID 16498438.
  27. Bezwada P., Clark L. A., Schneider S. Intrinsic cytotoxic effects of fluoroquinolones on human corneal keratocytes and endothelial cells (англ.) // Curr Med Res Opin (англ.)русск. : journal. — 2008. — February (vol. 24, no. 2). — P. 419—424. — doi:10.1185/030079908X261005. — PMID 18157922. Архивировано 22 сентября 2015 года. Архивная копия от 22 сентября 2015 на Wayback Machine
  28. Pollock G. A., McKelvie P. A., McCarty D. J., White J. F., Mallari P. L., Taylor H. R. In vivo effects of fluoroquinolones on rabbit corneas (англ.) // Clin. Experiment. Ophthalmol. : journal. — 2003. — December (vol. 31, no. 6). — P. 517—521. — PMID 14641160. (недоступная ссылка)
  29. Leonardi A., Papa V., Fregona I., Russo P., De Franchis G., Milazzo G. In vitro effects of fluoroquinolone and aminoglycoside antibiotics on human keratocytes (англ.) // Cornea : journal. — 2006. — January (vol. 25, no. 1). — P. 85—90. — PMID 16331047.
  30. Mallari P. L., McCarty D. J., Daniell M., Taylor H. Increased incidence of corneal perforation after topical fluoroquinolone treatment for microbial keratitis (англ.) // Am. J. Ophthalmol. (англ.)русск. : journal. — 2001. — January (vol. 131, no. 1). — P. 131—133. — PMID 11162991.
  31. Reviglio V. E., Hakim M. A., Song J. K., O’Brien T. P. Effect of topical fluoroquinolones on the expression of matrix metalloproteinases in the cornea (англ.) // BMC Ophthalmol (англ.)русск. : journal. — 2003. — October (vol. 3). — P. 10. — doi:10.1186/1471-2415-3-10. — PMID 14529574.
Читайте также:  Препараты от дистрофии роговицы

Ссылки[править | править код]

  • Nigel Brookes — изображения кератоцитов роговицы.
  • Разработка технологии восстановления прозрачности роговицы путём аутотрансплантации культивированных кератоцитов — инновационный проект, руководитель — Максим Герасимов

Источник

Что это такое?

Роговица – сферическая и прозрачная часть наружной оболочки глаза. Представляет собой органическую линзу, имеющую двояковыпуклое строение, которая через тонкие фиброзные волокна (лимб) прикрепляется к склере глаза.

stroenie-i-vneshnij-vidБлагодаря роговице и особенностям ее строения световые волны легко проходят в более глубокие слои органа зрения и попадают на сетчатку.

Функции роговицы:

  • защитная;
  • опорная;
  • светопроводящая;
  • преломляющая.

В норме ее характерными признаками являются:

  • высокая чувствительность и способность к регенерации;
  • прозрачность и зеркальность;
  • сферическое строение;
  • прочность и целостность;
  • отсутствие капилляров;
  • радиус кривизны–7,7-9,6 мм;
  • горизонтальный диаметр – 11 мм;
  • сила преломления света – 41 дптр.

Воспаление, травмы или дегенеративные процессы в роговице приводят к изменению ее изначальных параметров и свойств.

Строение 

Этот орган напоминает собой линзу, выпуклую снаружи и вогнутую внутри.

Она занимает собой от 1/5 до 1/6 поверхности наружной оболочки глаза. В отличие от ее более крупной части – склеры, роговица не имеет сосудов и абсолютна прозрачна. Ее толщина увеличивается по периферии и уменьшается по центру. 

ochki

sloi-rogovitsy-glaza

В роговице пять слоев:

  • покровный (передний), он состоит из эпителиальных клеток, выполняет защитную, газо- и влагообменную функцию;
  • боуменова мембрана, поддерживает форму сферы;
  • строма (основной и самый толстый слой), образована в основном коллагеновыми волокнами и фибро-, кера- и лейкоцитами, она обеспечивает прочность роговицы;
  • десцеметовый, способствует высокой толерантности наружного слоя глаза к внешним и внутренним воздействиям;
  • эндотелиальный (задний), внутренний слой, состоящий из клеток шестигранной формы, он выполняет насосную функцию, снабжая все оболочки роговицы питательными веществами из внутриглазной жидкости, поэтому именно при патологических изменениях в этом слое быстро развивается и обнаруживается на инструментальных обследованиях отек роговицы.
Читайте также:  Клиника ползучей язвы роговицы

sostav-rogovitsy

Нервная иннервация роговицы осуществляется вегетативными (симпатическими и парасимпатическими) нейронными сплетениями, которых на поверхности ее верхних слоев в 300-400 раз больше, чем на коже человека. Поэтому при травмах с повреждениями поверхностной оболочки роговицы и ее реснитчатных нервов у пострадавших очень сильно проявляются болевые ощущения. 

Из-за того, что роговица не имеет сосудов, ее питание обеспечивается внутриглазной жидкостью и капиллярами, окаймляющими ее.

Признаком нарушения кровоснабжения роговицы может стать ее помутнение, это обуславливается прорастанием в нее капилляров из лимба и сосудистой пленки.

Заболевания роговицы глаза

1.Травматические. Развиваются при попадании в глаз мелких щепок из дерева или металла, песка, химических веществ.

Поражение слоев роговицы при них может быть поверхностным или глубоким. Последствием такого травмирования может стать эрозия роговицы глаза. Ее формирование вызывают повреждения клеток эпителия и потеря их способности к регенерации (восстановлению).

Эрозия роговицы (фото)

Эрозия роговицы (фото)

Клиническими проявлениями этой патологии являются:

  • боль в глазу;
  • ощущение инородного предмета;
  • светобоязнь;
  • слезотечение;
  • зуд и жжение;
  • очаги помутнения в роговице;
  • уменьшение остроты зрения.

2. Врожденные дефекты строения:

  • мегакорнеа – патологически крупные размеры роговицы, достигающие более 11мм в диаметре;
  • микрокорнеа– уменьшение размеров роговицы (от 5мм в диаметре);
  • кератоглобус – выпячивание роговицы и изменение ее формы на шаровидную;
  • кератоконус – истончение роговицы и утрата упругости, приводящее к изменению ее формы на конусовидную.

keratokonus

  Так выглядит кератоконус

Все эти болезни влекут за собой изменение нормальных показателей зрения, возникновение близорукости, астигматизма, дальнозоркости, слепоты.

3. Воспалительные болезни (кератиты) инфекционного и неинфекционного происхождения.

Симптомы такого поражения роговицы:

  • резь в глазах и их гиперчувствительность к свету;
  • яркая сосудистая сетка конъюнктивы;
  • пастозность и (или) отечность роговицы;
  • замутненность зрения.

Осложнением бактериальных (вызванных стрепто-, стафило-, гоно-, дипло-и ли пневмококками, а также синегнойной палочкой кератитов является) ползучая язва роговицы. Она может развиться в течение нескольких суток, проникая сквозь слои к стекловидному телу. 

Признаками язвы выступают:

  • образование возвышающегося инфильтрата с неровными краями на поверхности роговицы;
  • гнойные выделения;
  • отслойка верхних слоев роговицы, ее помутнение и болезненность;
  • дефекты зрения.

Опасность этой патологии состоит в том, что возможна перфорация (прорыв) язвенного инфильтрата, пропитывание гнойным содержимым тканей глаза и его гибель.

4. Дистрофия. Возникает на фоне обменных нарушений в организме. Может быть врожденной или приобретенной.

Симптомы патологии могут долго не проявляться, а первые признаки обнаружиться случайно при инструментальном обследовании (небольшие полосы или зоны помутнения роговицы). С развитием недуга больные начинают жаловаться:

  • на сухость и замутненность в глазах;
  • потерю остроты зрения.

Пересадка роговицы

Применяется при неэффективности консервативного лечения и прогрессирующем ухудшении зрения. 

Оперативное вмешательство показано при поражении большой поверхности роговицы, если причиной его являются:

  • травмы;
  • обширный термический или химический ожог;
  • осложнения после воспалительных процессов;
  • необратимые дегенеративные изменения;
  • врожденные аномалии;
  • косметические дефекты (бельмо, рубцы).

Пересадка роговицы или, иначе – кератопластика, проводится с использованием донорского материала (трансплантата).

peresadka-rogovitsy

Она классифицируется:

  • на оптическую, которую применяют с целью восстановления прозрачности роговицы;
  • лечебную, которая призвана сохранить глаз, поэтому в ней используются даже мутные донорские роговицы);
  • рефракционную, она помогает восстановить зрение;
  • мелиоративную, технику укрепления роговичного слоя для повторных пересадок.

Методы замены роговицы:

  • послойный, показан при патологиях верхнего слоя, заменяют только его;
  • сквозной (частичный и тотальный), предполагает пересадку всех роговичных слоев.

Из-за отсутствия сосудов в роговице операции по ее пересадке считаются в офтальмологии несложными, с низким риском развития осложнений. Донорский имплантат обычно хорошо приживается и позволяет вернуть пациентам прежнее качество жизни.

Альтернативой пересадки роговицы выступает — кератопротезирование (применение искусственных роговиц). Его назначают после неудачных кератопластик (отторжения, воспаления). Техника выполнения протезирования сходна с пересадкой донорской роговицы.

Видео:

ochki

Источник