Сетчатка глаза белого цвета

Глазное яблоко состоит из трех оболочек. Первая – фиброзная, вторая — сосудистая, третья (внутренняя) – сетчатка. Все эти оболочки являются окружением глазного ядра. А фиброзную оболочку, в свою очередь, образуют две важнейших составляющих: белочная оболочка и роговица.

Понятие

Белочная оболочка глаза – это особая непрозрачная и плотная оболочка. Она светонепроницаема. И это качество гарантирует хорошее зрение и стабильное давление внутри глаз. Ее часто именуют склерой. Ее цвет – белый, а строительный материал – соединительная ткань. Склера – это глазной каркас, реализующий оборонительную функцию, это поддержка внешних тканей: мышц сосудов и нервов.

Белочная оболочка глаза имеет задние и передние отделения. В задних есть решетчатая пластинка. Через нее из глазного яблока образуется выход зрительного нерва. В передних склера преобразуется в роговицу. Участок данного преобразования получил определение лимб.

Склера у младенцев намного тоньше, чем у взрослых людей. И часто у новорожденных глаза имеют голубоватый оттенок

Площадь склеры значительна по сравнению с параметрами других наружных глазных оболочек. Склера покрывает 5/6 от поверхности всего глазного яблока. Диапазон ее плотностей в разных участках меняется от 0,3 до 1 мм.

Структура

Белочная оболочка глаза обладает несколькими слоями:

  1. Внешний (эписклеральный). Его наполняют кровеносные сосуды. Они являются гарантом его стабильного кровоснабжения. Это слой прочно связан с внешней стороной капсулы глаза. Многие сосуды следуют к переднему отделению глаза через мышцы. Поэтому верхняя сторона этого слоя имеет более насыщенное кровоснабжение по сравнению с внутренними отделениями.
  2. Средний. Это сама склера. Ее образуют коллагены и фиброциты. Они принимают участие в генерации коллагена, и распределяют его волокна.
  3. Внутренний — бурая пластина. В ней много пигмента. По этой причине данный слой имеет несколько специфическую окраску.

Функция пигментации возложена на хроматофоры. Это особые клетки, которых во внутреннем слое много. Основной материал бурой пластины – тончайшие волокна склеры. В них есть некоторое содержание эластичного элемента. Снаружи пластину покрывает специальный слой – эндотелий.

Всю плотность глазной белочной оболочки пронизывают кровеносные сосуды и нервные окончания. Они следуют через эмиссарии. Так называются особые каналы.

Функционал

У белочной оболочки глаза функций немного, но они являются ключевыми для нормального зрения и всего глаза. Их перечень изложен далее:

  1. Светонепроницаемость. Так как склеру наполняют коллагеновые волокна, и они сосредоточены без строгой позиций, то лучи света не пронизывают ткань склеры. Эта функция обеспечивает качественное зрение и защиту сетчатки от интенсивного внешнего светового воздействия.
  2. Оборона. Это главная функция склеры – белочной оболочки глаза. Это защита глазного яблока от механических, физических и прочих повреждений, а также агрессивного воздействия внешней среды.
  3. Каркас. На склеру опираются и крепятся многие мышцы, связки и прочие элементы глаза.

О заболеваниях

К сожалению, белочная оболочка глаза также подвержена разным заболеваниям. Наиболее распространенными являются:

  • эффект голубых склер;
  • меланоз;
  • эписклерит;
  • склерит.

Далее подробнее о каждом из обозначенных заболеваний.

Эффект голубых склер

Его еще называют синдромом голубых склер. Это врожденный недуг. Он передается на генетической основе. Его потенциальные причины — дефекты соединительной ткани, происходящие еще в утробе.

Передняя часть белочной оболочки глаза слишком тонкая. Через нее просвечивается внутренний слой склеры – пигментный. И сама склера получает голубоватые тона.

Меланоз

При этом заболевании на глазной поверхности появляются пигментные пятна. Они довольно темные. Это отложения меланина. Этот недуг может быть поверхностным или глубоким. Во втором случае возникают более серьезные воспаления. Пациенты с этим диагнозом должны быть на учете у окулиста, и как можно чаще его посещать.

Причины болезни таковы:

  1. Попадания инфекций на склеру.
  2. Тяжелые инфекционные заболевания, например, туберкулез.
  3. Ревматизм.
  4. Подагра.
  5. Болезни обменных механизмов.

Эписклерит

Это недуг поверхностного характера. При нем часто отмечается покраснение белочной оболочки глаза. На воспаленном участке присутствует незначительная опухоль. Этот участок просвечивает сквозь конъюнктиву.

У воспаленных зон неровные поверхности. А их оттенки могут быть синевато-красными. При контакте воспаление усиливается, в покое оно незначительное.

Склерит

Это более серьезная болезнь. При ней возникает глубокое и продолжительное воспаление. Уплотняются глубокие отделения ткани. Пациент чувствует боль внезапно или в момент отвода глаз. Есть ощущение инородного тела внутри глаза. Может появиться несколько воспалительных очагов.

Бывает передний и задний склерит. У первого двустороннее действие. При контакте с воспаленной зоной возникает сильная боль. Этот недуг может переходить на роговицу. Тогда уже образуется кератит. При заднем склерите пациенту больно двигать глазами, отекают веки и конъюнктивы.

Запущенный склерит может привести к вторичной глаукоме. Вторичная глаукома может стать результатом склерита. От склерита сначала страдает один глаз. Затем болезнь поражает и второй глаз. Патология часто становится хронической, и у нее случаются обострения.

Если в зону воспаления проникнут микроорганизмы, здесь появляется гной. После затухания воспаления на этом участке возникает рубец. Ткань белочной оболочки становится очень тонкой. Склера деформируется. Роговица может подтянуться в одну сторону. В итоге образуется астигматизм.

Склерит нужно лечить вовремя и качественно. Иначе можно стать инвалидом по зрению.

Лечение

При лечении главная задача – устранить источники воспаления. Чаще всего это аллергены. Для борьбы с ними назначаются средства, содержащие кортизон и хлорид кальция. При инфекционном склерите лечение не обходится без антибиотиков. Выписываются и сульфаниламиды в большом количестве.

Проводится и физиотерапевтическое лечение. Глаз получает необходимое тепло. Также важно контролировать функционал иммунной системы. Для этого выписываются специальные препараты.

При глубоких повреждениях белочной оболочки глаза развиваются гнойные воспаления и абсцессы. Здесь уже требуется операция. В процессе нее хирург вскрывает и дренирует абсцесс.

Читайте также:  Операция при отслоении сетчатки глаза у детей

Сегодня офтальмологи для борьбы с болезнями склеры все чаще используют лазерную терапию. При этом доктор работает в специальной программе на компьютере. С ее помощью управляет инструментом. После данной процедуры самочувствие пациента не ухудшается. Но больному нужно несколько часов на реабилитацию. Кому-то хватает трех часов, кому-то пяти-шести. Продолжительность реабилитации – вопрос индивидуальный.

После исчезновения воспаления на склере сохраняется небольшое потемнение. Постепенно оно рассасывается, и не остается никаких следов от него.

Чтобы эффективно лечить эписклерит, врач сначала выявляет его причины. Обычно, этой причиной является другое заболевание. Тогда выписываются лекарства для борьбы с ним. Часто назначаются антибиотики и регуляторы иммунного механизма, а также физиотерапевтические процедуры.

В целях профилактики болезней склеры рекомендуется:

  1. Соблюдать меры личной гигиены.
  2. Защищать глаза от излучений (компьютера, экрана, солнца и т.д.)
  3. Защищать глаза от механических воздействий (пыли, стружек, извести и т.д.).
  4. При малейших симптомах и подозрениях обращаться к окулисту.

Источник фотоматериалов: сайт https://www.syl.ru/article/378485/chto-takoe-sklera-stroenie-funktsii-i-osobennosti

вгд2.jpg
Новости на Блoкнoт-Воронеж

Источник

Цветоощущение (цветовая чувствительность, цветовое восприятие) — способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).

Цвет характеризуется тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).

Физическая сущность света и цвета

Видимая часть спектаСветом или световым излучением называются видимые электромагнитные колебания.

Световые излучения подразделяются на сложные и простые.

Белый солнечный свет — сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.

Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.

Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10-9 м, т.е. одной миллиардной доли метра). 

Всю видимую часть спектра можно разделить на три зоны

  • Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
  • от 490 до 570 нм — зеленой;
  • от 580 до 720 нм — красной.

Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.

Все цвета делятся на ахроматические и хроматические

  • Ахроматические (бесцветные) — это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
  • Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.

Цветовой тон — это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.

Светлота субъективно характеризует яркость цвета.

Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).

Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.

Восприятие цвета глазом

Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).

Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра — синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью. Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра. При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.

При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого. Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков — в случае большей мощности излучения зеленой зоне спектра. Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон — ощущение желтого цвета, красной и синей зон — ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными. Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.

Аддитивный синтез света

Основные цветаЭто процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра — синего, зеленого и красного.

Эти цвета называются основными или первичными излучениями адаптивного синтеза.

Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов. На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений. Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.

Читайте также:  Ангиопатия сетчатки гипертоническая чем лечить

Еще одна разновидность аддитивного синтеза — пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки. Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек. В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.

Субтрактивный синтез цвета

Первичные цвета субтрактивного синтезаЭто процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.

В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная — зеленые, а желтая — синие.

Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры. Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски. Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.

  • Основные цвета аддитивного синтеза — синий, зеленый и красный и
  • основные цвета субтрактивного синтеза — желтый, пурпурный и голубой образуют пары дополнительных цветов.

Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.

Полиграфический синтез цветаПри аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.

Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра. 

Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.

Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.

Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.

В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета. Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов. Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.

Оценка цвета

Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений. Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать. Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый». 

Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.

Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности. 

Цветовые пространства

Цветовое пространство CIE LabКоординаты цвета
L (Lightness) — яркость цвета измеряется от 0 до 100%,
a — диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,
b — диапазон цвета от синего -120 до желтого +120

В 1931 г. Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.

Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).

Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.

Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.

Читайте также:  Как немозол влияет на сетчатку

Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая — субтрактивного.

В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства — независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации.  С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.

Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.

Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи. Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения. Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.

Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин — общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра. Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин). При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) — редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут. 

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми. Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть». 

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.

Источник