Рецепторы света в сетчатке

Рецепторы сетчатки глаза

Рецептор — это сложная составляющая глаза, состоящая из нервных окончаний и других специализированных тканей. Благодаря им, наш организм воспринимает информацию из вне и доносит ее до нашего головного мозга. Вешнюю информацию могут принимать наши глаза в виде света, барабанные перепонки в ушах, рецепторы кожи. При приеме пищи, информацию передают рецепторы, которые находятся на языке.

По своему строению рецепторы подразделяются на простейшие и высокоорганизованные. Простейшие состоят из одной клетки. Высокоорганизованные состоят из большого количества клеток.
Так же рецепторы бывают:
— кожные;
— мышц и сухожилий;
— связок;
— сетчатки глаза.
Сетчатка глаза — это замысловатое переплетение нервных волокон и нервных клеток, которые соединены между собой. Они обеспечивают связь глаза с головным мозгом.

Более подробно рассмотрим рецепторы сетчатки глаза. Их принято разделять на палочки и колбочки. Палочки воспринимают окружающую среду в ночное время суток (их толщина 2 мкм, а высота 30 мкм). В глазу их насчитывается около 130 миллионов палочек. Колбочки воспринимают окружающую среду во время дневного освещения (их толщина составляет 6-7 мкм, а высота 10 мкм). В строении глаза их находится около 7 миллионов штук. Нахождение рецепторов в глазу неравномерно. На сетчатке глаза есть область, которая находится чуть в стороне от оптической зоны, близко около височной части. Она имеет желтый цвет, поэтому ее называют желтым пятном. В ней есть небольшое углубление, оно называется центральной ямкой. Со стороны желтого пятна, в направлении к этой ямке, почти все слои стираются и остаются только колбочки и палочки. На дне самой ямочки находятся только колбочки, палочек там совсем нет. Диаметр желтого пятна составляет около 1 мм., а диаметр центральной ямки — около 0,4 мм. Около желтого пятна больше находится палочек, колбочек в разы меньше. К краям сетчатки, число палочек стремительно снижается, а число колбочек увеличивается. На самом краю находятся только колбочки.

Глазная палочка человека состоит из 4 составляющих:
— наружный сегмент;
— внутренний сегмент;
— связующий сегмент;
— базальный сегмент.

Палочки глаза очень чувствительны по своей природе. Они способны распознавать малейший проблеск света. Поэтому наши глаза способны видеть и различать разные предметы в сумерках и в ночное время суток. Палочки не могут различать цвета, они реагируют только на цвет. Поэтому ночью мы все видим в черно-белых тонах. Так же эти рецепторы очень плохо улавливают световое движение и плохо улавливают движение в темное время суток. По этой причине, палочки не обладаю хорошей остротой зрения.

Внутри желтого пятна к колбочкам тянутся волокна зрительного нерва. За пределами этого пятна, одно волокно обслуживает большие группы колбочек и палочек. Поэтомй, все восприятие в середине ямки воспринимается четко и правильно. Чем больше удаленность от желтого пятна, тем больше получается размытость изображения, передаваемого в головной мозг. Если же изображение вообще сходит с пятна, то картинка в головной мозг не предается и мы ничего не можем увидеть. Это получается по причине того, что радиус обзорности пятна составляет 1. Периферическая доля сетчатки предназначена для лучшей ориентации в пространстве.

В составе палочек находится пигмент родопсин. Он появляется с возникновением сумерок и разрушается при свете. Благодаря пигменту йодопсину у колбочек есть возможность реагировать на появление света.

Помимо йодопсина и родопсина в глазном дне есть еще черный пигмент. Который защищает глаза от очень сильных световых раздражителей. Когда нет раздражителей — пигмент расположен на задней поверхности сетчатки, когда появляется яркий свет — то он перемещается навстречу яркому лучу, тем самым блокирует его негативное воздействие на глаз человека.

В глазу человека есть слепое пятно. В нем не содержатся ни палочки, ни колбочки. Из-за этого слепое пятно не чувствительно к свету. Его диаметр около 1,88 мм, а радиус зрения 6 градус. Если предмет взгляда человека попадет на это пятно, то часть предмета диаметром 10 см, человек увидеть не сможет.

Для определения наличия слепого пятна в глазу, нужно поднести на расстоянии 10 см к глазу человека рисунок. Прикрыть левый глаз, а на точку на рисунке смотреть правым глазом. При перемещении рисунка в сторону, в один момент вы не увидите рисунка. Это и есть слепое пятно глаза.

Источник

  • Болевые
    рецепторы.

  • Тельца
    Пачини —
    капсулированные рецепторы давления в
    округлой многослойной капсуле.
    Располагаются в подкожно-жировой
    клетчатке. Являются быстроадаптирующимися
    (реагируют только в момент начала
    воздействия), то есть регистрируют силу
    давления. Обладают большими рецептивными
    полями, то есть представляют грубую
    чувствительность.

  • Тельца
    Мейснера —
    рецепторы давления, расположенные в
    дерме.
    Представляют собой слоистую структуру
    с нервным окончанием, проходящим между
    слоями. Являются быстроадаптирующимися.
    Обладают малыми рецептивными полями,
    то есть представляют тонкую
    чувствительность.

  • Тельца
    Меркеля —
    некапсулированные рецепторы давления.
    Являются медленноадаптирующимися
    (реагируют на всей продолжительности
    воздействия), то есть регистрируют
    продолжительность давления. Обладают
    малыми рецептивными полями.

  • Рецепторы волосяных
    луковиц — реагируют на отклонение
    волоса.

  • Окончания
    Руффини —
    рецепторы растяжения. Являются
    медленноадаптирующимися, обладают
    большими рецептивными полями.

Рецепторы мышц и сухожилий

  • Мышечные
    веретена —
    рецепторы растяжения мышц, бывают двух
    типов:

    • с ядерной сумкой

    • с ядерной цепочкой

  • Сухожильный
    орган Гольджи —
    рецепторы сокращения мышц. При сокращении
    мышцы сухожилие растягивается и его
    волокна пережимают рецепторное
    окончание, активируя его.

Рецепторы связок

В
основном представляют собой свободные
нервные окончания (Типы 1, 3 и 4), меньшая
группа — инкапсулированные (Тип 2).
Тип 1 аналогичен окончаниям Руффини,
Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза

Сетчатка
содержит палочковые (палочки)
и колбочковые (колбочки)
фоточувствительные клетки, которые
содержат светочувствительные пигменты.
Палочки чувствительны к очень слабому
свету, это длинные и тонкие клетки,
сориентированные по оси прохождения
света. Все палочки содержат один
и тот же
светочувствительный пигмент. Колбочки
требуют намного более яркого освещения,
это короткие конусообразные клетки, у
человека
колбочки делятся на три вида, каждый из
которых содержит свой светочувствительный
пигмент — это и есть основа цветового
зрения.

Под
воздействием света в рецепторах
происходит выцветание —
молекула зрительного пигмента поглощает
фотон
и превращается в другое соединение,
хуже поглощающее свет волн (этой длины
волны).
Практически у всех животных (от насекомых
до человека) этот пигмент состоит из
белка, к которому присоединена небольшая
молекула, близкая к витамину
A. Эта
молекула и представляет собой химически
трансформируемую светом часть. Белковая
часть выцветшей молекулы зрительного
пигмента активирует молекулы трансдуцина,
каждая из которых деактивирует сотни
молекул циклического
гуанозинмонофосфата,
участвующих в открытии пор мембраны
для ионов
натрия,
в результате чего поток ионов прекращается —
мембрана гиперполяризуется.

Читайте также:  Схема лечения при дистрофии сетчатки

Чувствительность
палочек такова, что адаптировавшийся
к полной темноте человек способен
увидеть вспышку света такую слабую, что
ни один рецептор не может получить
больше одного фотона. При этом палочки
не способны реагировать
на изменения освещённости, когда свет
настолько ярок, что все натриевые каналы
уже закрыты.

32.

Палочки
и колбочки
отличаются
как структурно, так и функционально.
Зрительный пигмент (пурпур — родопсин)
— содержится только в палочках. В
колбочках находятся другие зрительные
пигменты — иодопсин, хлоролаб, эритлаб,
необходимые для цветового зрения.
Палочка в 500 раз более чувствительна к
свету, чем колбочка, но не реагирует на
свет с разной длиной волны, т.е. она не
цветочувствительна. Зрительные пигменты
расположены в наружном сегменты палочек
и колбочек. Во внутреннем сегменте
находится ядро и митохондрии, принимающие
участие в энергетических процессах при
действии света.

В глазу человека
около 6 млн. колбочек и 120 млн. палочек —
всего около 130 млн. фоторецепторов.
Плотность колбочек наиболее высока в
центре сетчатки и падает к периферии.
В центре сетчатки, в небольшом ее участке,
находятся только колбочки. Этот участок
называется центральной
ямкой
. Здесь
плотность колбочек равна 150 тысячам на
1 квадратный миллиметр, поэтому в области
центральной ямки острота зрения
максимальна. Палочек в центре сетчатки
очень мало, их больше на периферии
сетчатки, но острота «периферического»
зрения при хорошей освещенности невелика.
В условиях сумеречного освещения
преобладает периферическое зрение, а
острота зрения в области центральной
ямки падает. Таким образом, колбочки
функционируют при ярком свете и выполняют
функцию восприятия цвета, палочкой
воспринимают свет и обеспечивают
зрительное восприятие при слабой
освещенности. Палочки и колбочки
соединены с биполярными нейронами
сетчатки, которые, в свою очередь,
образуют с ганглиозными клетками
синапсы, выделяющие ацетилхолин. Аксоны
ганглиозных клеток сетчатки в составе
зрительного нерва идут к различным
мозговым структурам. Около 130 млн.
фоторецепторов связаны с 1,3 млн., волокон
зрительного нерва, что свидетельствует
о конвергенции зрительных структур и
сигналов. Только в центральной ямке
каждая колбочка связана с одной биполярной
клеткой, а она, в свою очередь, — с одной
ганглиозной. К периферии от центральной
ямки на одной биполярной клетке
конвергируют множество палочек и
несколько колбочек, а на ганглиозной —
множество биполярных. Поэтому функционально
такая система обеспечивает переработку
первичного сигнала, повышающую вероятность
его обнаружения за счет широкой
конвергенции связей от периферических
рецепторов к ганглиозной клетке,
посылающей сигналы в мозг.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Фоторецепторы — светочувствительные сенсорные нейроны сетчатки глаза. Фоторецепторы содержатся во внешнем зернистом слое сетчатки. Фоторецепторы отвечают (а не , как другие нейроны) в ответ на адекватный этим рецепторам сигнал — свет. Фоторецепторы размещаются в сетчатке очень плотно, в виде шестиугольников (гексагональная упаковка)[1][2][3][4].

Классификация фоторецепторов[править | править код]

Maurolicus muelleri

К фоторецепторам в сетчатке глаза человека относятся 3 вида колбочек (каждый тип возбуждается светом определённой длины волны), которые отвечают за цветное зрение, и один вид палочек, который отвечает за сумеречное зрение. В сетчатке глаза человека насчитывается 110 ÷ 125 млн палочек и 4 ÷ 7 млн колбочек[5].

У глубоководной морской рыбы Maurolicus muelleri[en] фоторецепторы дополнены «палочковидными колбочками» («палочкоколбочками», англ. rod-like cones), объединяющими свойства палочек и колбочек и предназначенные для острого зрения при умеренном освещении[6][7].

Сравнение палочек и колбочек[править | править код]

Таблица, иллюстрирующая различия между палочками и колбочками (по книге Эрика Канделя «Принципы науки о нейронах»[8])

ПалочкиКолбочки
Используются для ночного зрения (в условиях слабой освещенности)Используются для дневного зрения (в условиях высокой освещенности)
Высокочувствительны; воспринимают и рассеянный светНе очень чувствительны к свету; реагируют только на прямой свет
Повреждение вызывает никталопию (гемералопию)Повреждение вызывает слепоту, дневную слепоту, ахроматопсию
Низкая острота зренияВысокая острота зрения; лучшее пространственное разрешение
Нет в центральной ямкеСосредоточены в центральной ямке
Замедленная реакция на светБыстрая реакция на свет, могут воспринимать более быстрые изменения у раздражителя
Имеют больше пигмента, чем колбочкиИмеют меньше пигмента
Мембранные диски не привязаны непосредственно к клеточной мембранеМембранные диски крепятся к наружной мембране
В 20 раз больше, чем колбочек, по количеству.
Один тип фоточувствительного пигментаТри типа фоточувствительных пигментов у человека
Ср. Ахроматическое зрение Ср. Цветное зрение

Связи между фоторецепторами[править | править код]

У позвоночных животных существуют горизонтальные связи между однотипными фоторецепторами (например, между колбочками с одинаковой чувствительностью), а в некоторых случаях — и между рецепторами разного типа[9][10][11]. В сетчатке приматов связей между палочками не обнаружено[12]. Несмотря на это, фоторецепторы на их освещение отвечают так, будто между ними есть связи. При освещении одного рецептора происходит его гиперполяризация. Если бы не было связей между фоторецепторами, то такое воздействие давало бы единственный отреагировавший фоторецептор сетчатки человека. Однако, опыты показывают, что соседние рецепторы тоже гиперполяризируются. Вероятное объяснение этого парадокса состоит в том, что колбочки центральной ямки расположены очень плотно, и изменение мембранного потенциала одного фоторецептора перетекает на соседние.

См. также[править | править код]

  • Глазки Гессе

Примечания[править | править код]

  1. ↑ Хьюбел Д. Глаз, мозг, зрение. — М.: Мир, 1990. — 240 с.
  2. ↑ Меденников П. А., Павлов Н. Н. Гексагональная пирамида как модель структурной организации зрительной системы // Сенсорные системы. — 1992. — т.6 № 2 — с.78-83.
  3. ↑ Лебедев Д. С., Бызов А. Л. Электрические связи между фоторецепторами способствуют выделению протяженных границ между разнояркими полями // Сенсорные системы. — 1988. — т.12, № 3. — с. 329—342.
  4. ↑ Watson A. B., Ahumada A. J. A hexahonal orthogonal-oriented pyramid as a model of image representation in visual cortex// IEEE Transactions on Biomedical Engineering. — Vol. 36, № 1 — pp.97-106.
  5. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с.
  6. de Busserolles F. et al. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides : [англ.] // Science Advances. — 2017. — Vol. 3, no. 11. — P. 1—12 (eaao4709). — doi:10.1126/sciadv.aao4709.
  7. ↑ У глубоководной рыбки нашли новый тип зрительных рецепторов — «палочкоколбочки», Индикатор. Дата обращения 14 декабря 2017.
  8. Kandel, E. R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science (неопр.). — 4th. — New York: McGraw-Hill Education, 2000. — С. 507—513. — ISBN 0-8385-7701-6.
  9. ↑ Школьник-Яррос Е. Г. , Калинина А. В. Нейроны сетчатки. — М.: Наука, 1986. — 208 с.
  10. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с
  11. ↑ Ноздрачев А. Д. Общий курс физиологии человека и животных. Т.1, — М.: Высшая школа, 1991. −512 с.
  12. ↑ Hoyenga K. B., Hoyenga K. T. Psychobiology: the neuron and behavior. — Western Illinois University.: Brooks/ Cole Publishing Company Pacific Grove, California, 1988.
Читайте также:  Фоновая ангиопатия сетчатки у ребенка форум

Ссылки[править | править код]

  • Особенности цветного зрения у различных млекопитающих

Гистология: Нервная ткань

Нейроны
(Серое вещество)
  • Перикарион
  • Аксон
    • Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты
  • Конус роста
  • Аксонный транспорт
  • Валлерова дегенерация
  • Дендрит
    • Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит
  • Дендритная пластичность
  • Дендритный потенциал действия

типы
Биполярные нейроны
Униполярные нейроны
Псевдоуниполярные нейроны
Мультиполярные нейроны
Пирамидальный нейрон
Звёздчатый нейрон
Клетка Пуркинье
Гранулярная клетка
Интернейрон
Клетка Реншоу

Афферентный нерв/
Сенсорный нейрон
  • GSA
  • GVA
  • SSA
  • SVA
  • Нервные волокна
    • Мышечные веретёна (Ia), Нервно-сухожильное веретено (Ib), II или Aβ-волокна, III или Aδ-волокна, IV или C-волокна
Эфферентный нерв/
Моторный нейрон
  • GSE
  • GVE
  • SVE
  • Верхний мотонейрон
  • Нижний мотонейрон
    • α мотонейроны, γ мотонейроны
Синапс
  • Химический синапс
  • Нервно-мышечный синапс
  • Эфапс (Электрический синапс)
  • Нейропиль
  • Синаптический пузырёк
Сенсорный рецептор
  • Тельце Мейснера
  • Тельце Меркеля
  • Тельце Пачини
  • Тельце Руффини
  • Нервно-мышечное веретено
  • Свободное нервное окончание
  • Обонятельный нейрон
  • Фоторецепторные клетки
  • Волосковые клетки
  • Вкусовая луковица
Нейроглия
  • Астроциты
    • Радиальная глия
  • Олигодендроциты
  • Клетки эпендимы
    • Танициты
  • Микроглия
Миелин
(Белое вещество)
ЦНС
ОлигодендроцитыПНС
Шванновские клетки
Нейролемма
Перехват Ранвье/Межузловой сегмент
Насечка миелина
Соединительная ткань
  • Эпиневрий
  • Периневрий
  • Эндоневрий
  • Пучки нервных волокон
  • Мозговые оболочки: твёрдая, паутинная, мягкая

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 июля 2018;
проверки требуют 6 правок.

Реце́птор — объединение из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение стимулов внешней или внутренней среды (раздражителей) в нервный импульс. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизменёнными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Принцип работы рецепторов[править | править код]

Стимулами для разных рецепторов могут служить свет, механическая деформация, химические вещества, изменения температуры, а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непосредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных
рецепторов и изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы), то обычно происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как деполяризоваться, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Такой механизм реализован, в частности, в чувствительных элементах сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механочувствительные, термочувствительные и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов[править | править код]

Существуют несколько классификаций рецепторов:

  • По положению в организме
    • Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например, многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы)
  • По адекватному раздражителю:
    • Хеморецепторы — воспринимают воздействие растворённых или летучих химических веществ
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды)
    • Механорецепторы — воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)
    • Фоторецепторы — воспринимают видимый и ультрафиолетовый свет
    • Терморецепторы — воспринимают термические колебания среды (тепловые стимулы)
    • Болевые рецепторы, стимуляция которых приводит к возникновению болевых ощущений. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которая не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов[1].
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции — осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции — зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т. д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток[2].

Читайте также:  Как вести себя при отслойке сетчатки

В таблице приведены данные о некоторых типах рецепторов

Природа раздражителяТип рецептораМесто расположения и комментарии
• электрическое поле• ампула Лоренцини
и другие типы
• Имеются у рыб, круглоротых, амфибий, а также у утконоса и ехидны
• химическое соединение• хеморецептор
• влажность• гигрорецептор• Относятся к осморецепторам или механорецепторам. Располагаются на антеннах и ротовых органах многих насекомых
• механическое воздействие• механорецептор• У человека имеются в коже (экстероцепторы) и внутренних органах (барорецепторы, проприоцепторы)
• давление• барорецептор• Относятся к механорецепторам
• положение тела• проприоцептор• Относятся к механорецепторам. У человека это нервно-мышечные веретена, сухожильные органы Гольджи и др.
• осмотическое давление• осморецептор• В основном интерорецепторы; у человека имеются в гипоталамусе, а также, вероятно, в почках, стенках желудочно-кишечного тракта, возможно, в печени. Существуют данные о широком распространении осморецепторов во всех тканях организма
• свет• фоторецептор
• температура• терморецептор• Реагируют на изменение температуры. У человека имеются в коже и в гипоталамусе
• повреждение тканей• ноцицептор• В большинстве тканей с разной частотой. Болевые рецепторы — свободные нервные окончания немиелинизированных волокон типа C или слабо миелинизированных волокон типа Aδ.
• магнитное поле• магнитные рецепторы• Точное расположение и строение неизвестны, наличие у многих групп животных доказано поведенческими экспериментами

Рецепторы человека[править | править код]

Рецепторы кожи[править | править код]

  • Свободные нервные окончания[en] — нервные окончания, состоящие только из конечных ветвлений осевого цилиндра. Располагаются в эпителии. Выступают в качестве терморецепторов, механорецепторов и ноцицепторов (то есть отвечают за восприятие изменения температуры, механических воздействий и болевые ощущения)[3].
  • Несвободные нервные окончания:
    • Тельца Пачини — инкапсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, а потому обладают грубой чувствительностью[4].
    • Тельца Мейснера — инкапсулированные рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, а потому обладают тонкой чувствительностью[5].
    • Тельца Меркеля — некапсулированные рецепторы давления. Располагаются у птиц — в дерме, у прочих позвоночных — в глубоких слоях эпидермиса. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями[6][7].
    • Тельца Руффини — инкапсулированные рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Реагируют также на тепло[4].
    • Колбы Краузе[en] — инкапсулированные рецепторы, расположенные в надсосочковом слое дермы. Раньше считалось, что у Колб Краузе есть специфическая чувствительность, но их роль в качестве холодовых рецепторов не подтвердилась. [4].
    • Рецепторы волосяных фолликулов[en] — механорецепторы, расположенные в волосяных фолликулах и реагирующие на отклонение волоса от исходного положения[8].

Рецепторы мышц и сухожилий (проприоцепторы)[править | править код]

  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок[править | править код]

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза[править | править код]

Сетчатка содержит палочковые и колбочковые фоточувствительные клетки, в которых имеются светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент — это и есть основа цветового зрения.

Под воздействием света в рецепторах происходит выцветание — молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет на этой длине волны. Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая по структуре к витамину A. Эта молекула и представляет собой химически трансформируемую светом часть. Белковая часть выцветшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается — мембрана гиперполяризуется.

Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что каждый рецептор получит не больше одного фотона. При этом палочки не способны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые каналы уже закрыты.

См. также[править | править код]

  • Рецептивное поле
  • Сенсорная система

Примечания[править | править код]

  1. ↑ David Julius and Allan Basbaum. Molecular mechanisms of nociception. Nature 413, 203—210 (13 September 2001)
  2. ↑ Q&A: Animal behaviour: Magnetic-field perception. Kenneth J. Lohmann. Nature, Vol. 464, No. 7292. (22 April 2010)
  3. ↑ Гистология, цитология и эмбриология, 2004, с. 303—304.
  4. 1 2 3 Гистология, цитология и эмбриология, 2004, с. 304.
  5. ↑ Гистология, цитология и эмбриология, 2004, с. 304—305.
  6. Halata Z., Grim M., Baumann K. I.  Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: Review and new results // The Anatomical Record, 2003, 271A (1). — P. 225—239. — doi:10.1002/ar.a.10029.
  7. Halata Z., Baumann K. I., Grim M.  Merkel Nerve Endings Functioning as Mechanoreceptors in Vertebrates // The Merkel Cell: Structure — Development — Function — Cancerogenesis / Baumann K. I., Halata Z., Moll I. (Eds.). — Berlin, Heidelberg: Springer Verlag, 2003. — xiv + 248 p. — ISBN 978-3-642-05574-4. — P. 3—6.
  8. Paus R., Cotsarelis G.  The Biology of Hair Follicles // The New England Journal of Medicine, 1999, 341 (7). — P. 491—497. — doi:10.1056/NEJM199908123410706.

Литература[править | править код]

  • Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. — М.: Медицина, 2004. — 768 с. — ISBN 5-225-04858-7.
  • Дэвид Хьюбел — «Глаз, мозг, зрение» перевод с англ. канд. биол. наук О. В. Левашова, канд. биол. наук Г. А. Шараева под ред. чл.-корр. АН СССР А. Л. Бызова, Москва «Мир», 1990

Источник