Разблокировка по сетчатке глаз

Первые сообщения о «взломе» биометрических систем защиты флагманских смартфонов компании Samsung (Galaxy S8 и S8+) появились фактически в день их презентации, в конце марта 2017 года. Напомню, что тогда испанский испанский обозреватель MarcianoTech вел прямую Periscope-трансляцию с мероприятия Samsung и обманул систему распознавания лиц в прямом эфире. Он сделал селфи на собственный телефон и продемонстрировал полученное фото Galaxy S8. Как это ни странно, этот простейший трюк сработал, и смартфон был разблокирован.

Однако флагманы Samsung комплектуются сразу несколькими биометрическими системами: сканером отпечатков пальцев, системой распознавания радужной оболочки глаза и системой распознавания лиц. Казалось бы, сканеры отпечатков и радужной оболочки должны быть надежнее? По всей видимости, нет.

Исследователи Chaos Computer Club (CCC) сообщают, что им удалось обмануть сканер радужной оболочки глаза с помощью обыкновенной фотографии, сделанной со средней дистанции. Так, известный специалист Ян «Starbug» Криссер (Jan Krissler) пишет, что достаточно сфотографировать владельца Galaxy S8 таким образом, чтобы его глаза были видны в кадре. Затем нужно распечатать полученное фото и продемонстрировать его фронтальной камере устройства.

Единственная сложность заключается в том, что современные сканеры радужной оболочки глаза (равно как и системы распознавания лиц) умеют отличать 2D-изображения от реального человеческого глаза или лица в 3D. Но Starbug с легкостью преодолел и эту сложность: он попросту приклеил контактную линзу поверх фотографии глаза, и этого оказалось достаточно.

Для достижения наилучшего результата специалист советует делать фото в режиме ночной съемки, так как это позволит уловить больше деталей, особенно если глаза жертвы темного цвета. Также Крисслер пишет, что распечатывать фотографии лучше на лазерных принтерах компании Samsung (какая ирония).

«Хорошей цифровой камеры с линзой 200 мм будет вполне достаточно, чтобы с расстояния до пяти метров захватить изображение, пригодное для обмана системы распознавания радужной оболочки глаза», — резюмирует Крисслер.

Данная атака может оказаться куда опаснее, чем банальный обман системы распознавания лиц, ведь если последнюю нельзя использовать для подтверждения платежей в Samsung Pay, то радужную оболочку глаза для этого использовать как раз можно. Найти качественную фотографию жертвы в наши дни явно не составит труда, и в итоге атакующий сможет не просто разблокировать устройство и получить доступ к информации пользователя, но и похитить средства из чужого кошелька Samsung Pay.

Специалисты Chaos Computer Club предупреждают пользователей, что не стоит доверять биометрическим системам защиты сверх меры и рекомендуют применять старые добрые PIN-коды и графические пароли.

Видеоролик ниже пошагово иллюстрирует все этапы создания фальшивого «глаза» и демонстрирует последующий обман Samsung Galaxy S8.

UPD.

Представители компании Samsung прокомментировали ситуацию:

«Компании известно об этом сообщении. Samsung заверяет пользователей, что технология распознавания радужной оболочки глаза в Galaxy S8 была разработана и внедрена после тщательного тестирования, чтобы обеспечить высокий уровень точности сканирования и предотвратить попытки несанкционированного доступа.

Описываемый в упомянутом материале способ может быть реализован только с использованием сложной техники и совпадении ряда обстоятельств. Нужна фотография сетчатки высокого разрешения, сделанная на ИК-камеру, контактные линзы и сам смартфон. В ходе внутреннего расследования было установлено, что добиться результата при использовании такого метода невероятно сложно.

Тем не менее, даже при наличии потенциальной уязвимости, специалисты компании приложат все усилия, чтобы в кратчайшие сроки обеспечить безопасность конфиденциальных и личных данных пользователей».

Источник

Сканер глаза в смартфонах Samsung заболел излишней доверчивостью

Фото:
Kim Hong-Ji/Reuters

Хакеры обвели вокруг пальца сканер глаза в новых телефонах Samsung. Разблокировать смартфон удалось с помощью фотографии. Ударит ли это по имиджу компании?

Разрекламированный сканер глаза смартфона Samsung обманули с помощью фотографии. Исследователям удалось разблокировать новый флагман Galaxy S8 со сканером радужной оболочки. Об этом рассказывает IT-издание Motherboard со ссылкой на организацию Chaos Computer Club. При этом компания Samsung в рекламных роликах о функции сканирования радужной оболочки обещала пользователям «герметичный уровень безопасности». Насколько защищены от взлома многочисленные новомодные способы блокировки телефона?

Chaos Computer Club — крупнейшая ассоциация хакеров Европы численностью более пяти тысяч специалистов — оставила Samsung в дураках. Хакеры-исследователи опубликовали ролик, на котором условного владельца смартфона Galaxy S8 фотографируют с расстояния двух метров, а затем печатают фотографию на лазерном принтере Samsung — какая ирония! — после чего на изображение кладут контактную линзу. В итоге смартфон, разрекламированный как ультрабезопасный, разблокирует экран без участия своего владельца.

Samsung в последнее время преследуют неудачи: сначала начали загораться телефоны, потом взрываться стиральные машинки, теперь сканеры заболели излишней доверчивостью. Насколько новость ударит по компании?

Денис Кусков, гендиректор аналитического агентства Telecomdaily:

«Пока я не думаю, что это может вызвать отток пользователей, выбрасывание трубок и так далее. Но люди, конечно, с осторожностью будут относиться к возможным каким-то операциям, связанным с платежными системами, с тратой денег. Возможно, будут использовать другие возможности, как пин-код. Но в любом случае компании всегда находятся в некой такой конфронтации с хакерами, с людьми, которые совершают противоправные действия. Одни борются за создание систем защиты, а вторые борются за создание систем, которые отпирают защиту. И на самом деле, этот процесс постоянный».

В последние годы число различных способов разблокировки смартфона постоянно растет. Кроме стандартного пароля, есть сканер отпечатков, есть голосовая разблокировка, сканирование лица, сканирование радужной оболочки. Насколько безопасны эти технологии?

Роман Ромачев, генеральный директор агентства разведывательных технологий «Р-Техно»:

«Если углубиться в принцип действия подобных технологий, скажем, сетчатки глаза либо отпечатка пальца, то достаточно вспомнить, как телефон предлагает нам это сделать. Мы несколько раз прикладываем палец к телефону, как правило, три раза, и телефон усредняет это значение и заносит в память. То же самое с сетчаткой глаза. То есть это не 100-процентный результат, это опять же некий усредненный. Поэтому я не удивляюсь, что хакерам удалось взломать подобные телефоны, поскольку достаточно средний рисунок глаза либо опечатка пальца подобрать и взломать».

По данным ФБР, ведомству удается разблокировать почти половину мобильных устройств подозреваемых, когда возникает такая необходимость. С одной стороны, это означает, что более половины девайсов не могут разблокировать даже американские спецслужбы. С другой стороны, ни один пользователь новых технологий не защищен на 100%.

Михаил Чернышов, директор по развитию бизнеса лаборатории «Лексант»:

«Персональная защита именно разблокировки телефона любыми методами все-таки, в первую очередь, предназначена для сохранности вашей информации от кражи телефона в случае хулиганства. Но если мы говорим о серьезных намерениях получить вашу информацию с мобильного гаджета, я сомневаюсь, что ее будут получать с помощью разблокировки вашего телефона и непосредственно отбора у вас этого телефона. Ее получат, я уверен, с обратной стороны, из Сети».

Новость об уязвимости сканера радужной оболочки имеет особую актуальность в России, где несколько дней назад заработала система Android Pay. Теперь возможность расплачиваться за покупки с помощью телефона доступна миллионам, если не десяткам миллионов россиян. Ждать ли массовых краж денег с виртуальных карт? Ну, если вас могут сфотографировать и украсть у вас телефон, точно так же смогут сфотографировать момент ввода пин-кода и украсть у вас банковскую карту. Быть осторожным стоит, но повода для паники нет.

Ситуацию прокомментировали в Samsung:

«Компании известно об этом сообщении. Samsung заверяет пользователей, что технология распознавания радужной оболочки глаза в Galaxy S8 была разработана и внедрена после тщательного тестирования, чтобы обеспечить высокий уровень точности сканирования и предотвратить попытки несанкционированного доступа. Описываемый в упомянутом материале способ может быть реализован только с использованием сложной техники и совпадении ряда обстоятельств. Нужна фотография сетчатки высокого разрешения, сделанная на ИК-камеру, контактные линзы и сам смартфон. В ходе внутреннего расследования было установлено, что добиться результата при использовании такого метода невероятно сложно».

Видео дня. В городском морге Петербурга устроили вечеринку со стриптизом

Источник

Не так давно был представлен новый флагман Samsung Galaxy Note 7.  Одной из его ключевых функций стала возможность разблокировки устройства при помощи сканирования радужки глаза.

Сканер радужки глаза, это один из устоявшихся штампов киноиндустрии, особенно, когда дело касается шпионских и научно-фантастических фильмов. Теперь эта технология стала не просто выдумкой, а перекочевала в повседневные гаджеты простых людей (а не супершпионов), в частности, в смартфоны, ну по крайней мере один точно. Посмотрим, как эта штука приживётся в смартфоностроении: перекочует ли она к другим производителям или останется бесполезной диковинкой Galaxy Note 7 (или вообще откровенной дичью), как проектор в китайском смартфоне. Тем не менее, нам стало интересно, как устроен этот сканер. Мы разобрались и спешим поделиться этим с вами.

Читайте также:  Макулярный разрыв сетчатки силикон

Как выглядит общая схема сканирования радужной оболочки глаза

Радужная оболочка наших глаз, как и отпечаток пальца имеет свой неповторимый рисунок. Поэтому это удобное средство аутентификации. Биометрические гражданские паспорта, если вы помните, фиксируют именно эту информацию, потому что в отличие от отпечатка пальцев, радужку глаза подделать пока не представляется возможным. Кроме того со временем она не изменяется.

Однако сканер не просто фотографирует ваш глаз, а потом сверяет с исходником. На практике процедура начинается с направленного инфракрасного луча ближнего спектра. Этот свет для идентификации подходит гораздо лучше, чем дневной, потому что камере легче захватить рисунок радужки, подсвеченный именно ИК-светом. Кроме того, такой сканер может работать в темноте. При этом процедуре идентификации радужной оболочки могут подвергаться даже люди с плохим зрением, так как ИК-луч свободно проходит через прозрачные очки и линзы. После того, как рисунок радужки зафиксирован, алгоритм переводит рисунок радужной оболочки глаза в код, который сравнивается с имеющейся базой.

galaxy-note-7-iris-scanner-works

Захват изображения глаза — полученная картинка — определение радужки и века — выделение этой области — удаление века с картинки — нормализация этой области — транскодирование — сравнение с базой данных

В чём особенность сканера Samsung Galaxy Note 7?

По большей части, сканер нового фаблета от Samsung работает по описанной выше схеме, любопытная деталь заключается в том, что на фронтальной панели Galaxy Note 7 располагается камера, которая занимается исключительно распознаванием радужной оболочки глаза. Почему же фронтальная камера не может выполнять эту задачу? Потому что камера должна быть чувствительна к ИК спектру. В обычных камерах ИК свет фильтруется, так как он портит обычные фотографии. Кроме этого считывающая камера имеет более узкий угол обзора, чтобы видеть глаз пользователя лучше, особенно на расстоянии.

Samsung-Galaxy-Note-7

Насколько это безопасно?

Некоторые пользователи выразили озабоченность по поводу того, что такой сканер в Samsung Galaxy Note 7 может быть небезопасен, в частности, не приведёт ли его частое использование к необратимому повреждению глаз. Такие вопросы вполне резонны, ведь для сканирования смартфон отправляет луч света прямо в ваш глаз, и так как этот свет невидим для человека, то зрачок никак не пытается от него защититься, поэтому свет попадает на сетчатку, не встречая никаких преград.

На самом деле мы не можем быть на 100% уверенными, что частое использование сканера радужки глаза Samsung Galaxy Note 7 не будет иметь какого-то влияния на наши глаза. Если сейчас эту статью читает окулист, мы будем рады услышать ваше экспертное мнение в этом вопросе.

Сама компания предупреждает пользователей, что подносить смартфон слишком близко к глазам во время идентификации не нужно, если следовать этому предостережению всё должно быть хорошо. Однако так как считывание радужки не такое частое явление, массового тестирования и результатов, сделанных на основе людей, пока нет. Когда они появятся, может быть уже слишком поздно кого-то предупреждать, а может быть и наоборот — придёт подтверждение, что функция полностью безопасна.

note-7-iris-scan-warning

Это тоже самое, что сканер сетчатки?

Если вы запутались — проясню, да сканирование радужки и сетчатки — процессы схожие, но различаются по основному принципу. При сканировании сетчатки, алгоритм считывает не рисунок сетчатки, а изображение глазного дна. Но для бытовых условий гораздо проще пользоваться сканером радужной оболочки, так как для считывания сетчатки устройство нужно подносить вплотную к глазу.  В случае со смартфоном это выглядело бы очень глупо.

Зачем это нужно?

В смартфонах уже давно есть считыватели отпечатков пальцев, они быстрые надёжные безопасные и достаточно дешёвые, чтобы быть установленными даже в китайских смартфонах дешевле $200. Зачем тогда нам сканеры радужной оболочки? Главным образом затем, что они в несколько раз более надёжны и безопасны. Главным доводом является то, что отпечатки пальцев мы оставляем почти на каждой поверхности, к которой прикасаемся, а значит копию отпечатка гораздо проще достать. При этом мокрые и грязные пальцы устройству часто тяжело распознать. Получить копию радужной оболочки крайне тяжело, а глаза изнутри никогда не заляпаны грязью, поэтому владельцу воспользоваться аутентификацией в любых условиях гораздо проще. Хотя, в кино уже давно придумали способ, как обойти эту защиту:

Разблокировка по сетчатке глаз

Есть ли у технологии будущее?

Я считаю, что сканер Samsung Galaxy Note 7 не сделает его хитом. Да, эта технология работает и ей можно лихо хвастаться друзьям, но для большинства — использование сканера отпечатка пальцев будет достаточно. Однако не исключено, что новинку оценит, в первую очередь, корпоративный сегмент, которому необходимо лучше, чем остальным защищать информацию на своём смартфоне. Для простых обывателей, думается мне, будет слишком лениво подносить смартфон на определённое расстояние, при этом совершая необходимые действия. Но это не говорит о том, что Samsung не разовьёт технологию или о том, что она неожиданно не выстрелит и перекочует даже в iPhone. Шансы у этой серьёзной игрушки есть.

Источник

сканер радужной оболочки глаза

Возможно, вы видели такое в фильмах про спецагентов: человек подходит к закрытой двери какой-нибудь секретной лаборатории, нажимает кнопочку, его глаз сканируется каким-то лучом, дверь открывается, и он попадает внутрь. Подобные технологии существуют уже сейчас, они начинают применяться в мобильных устройствах и в будущем получат широкое распространение.

Сканер радужной оболочки глаза уже используется в смартфонах Microsoft Lumia 950 и Lumia 950 XL. Он также будет у смартфона Galaxy Note 7, анонс которого состоится в начале августа.

Как работает этот сканер, для чего он нужен и нужен ли вообще?

Радужная оболочка глаза предопределяет цвет глаз человека. Если рассмотреть глазное яблоко вблизи, на его поверхности можно заметить линии, формирующие определённый рисунок. Этот рисунок уникален у любого человека и разный для каждого глаза (у правого он один, у левого совершенно другой). Он очень сложный и со временем практически не меняется — точно так же, как отпечатки пальцев. Сканер радужной оболочки предназначен для считывания этого рисунка и сопоставления его с ранее сохранёнными рисунками.

Для сканирования рисунка радужной оболочки глаза применяется излучение, близкое к инфракрасному. Оно, во-первых, позволяет сканеру работать даже в темноте, а во-вторых, считывает рисунок намного точнее, чем излучение видимого спектра света. Очки и контактные линзы не препятствуют прохождению лучей света, поэтому не оказывают отрицательное влияние на качество распознавания. По завершению сканирования рисунок переводится в код, а этот код сравнивается с ранее сохранённой записью. Если коды совпадают, происходит разблокировка устройства.

сканер радужной оболочки глаза

Биометрический сканер, предназначенный для разблокировки Galaxy Note 7, будет работать сложнее. Судя по имеющемуся у компании Samsung патенту, в нём объединены несколько сенсоров — датчик, считывающий рисунок радужной оболочки глаз, а также камера, распознающая лицо пользователя. Проще говоря, разблокировать Galaxy Note 7 можно будет лишь одним взглядом на фронтальную камеру.

Разблокировка при помощи сканирования лица камерой появилась в Android два года назад и доступна на большинстве смартфонов, но почти не используется из-за большой погрешности распознавания. Кроме того, она не работает в темноте.

Читайте также:  Что такое пигментная дегенерация сетчатки

Существует ещё одна схожая технология — сканирование сетчатки глаза. Сетчатка расположена внутри глазного яблока и тоже строго индивидуальна у каждого человека. Сканирование сетчатки производится только с близкого расстояния, что неудобно — для разблокировки смартфона пользователю пришлось бы подносить его прямо к глазу.

Сканер радужной оболочки глаза лучше, чем сканер отпечатков пальцев?

Он удобнее. Для сканирования отпечатка пальца вам нужно прикасаться к поверхности смартфона, причём ваши руки должны быть чистыми и сухими. Сканеру радужной оболочки глаза трогать не нужно — он считывает нужные данные с относительно большого расстояния.

Сканеры отпечатков пальцев начали использоваться в смартфонах около десяти лет назад, но стали популярны лишь после появления в айфонах. Сейчас их устанавливают даже в недорогие смартфоны. Сканер радужной оболочки глаза сейчас используются только в Lumia 950 и Lumia 950 XL, но эта технология станет намного более распространённой после выхода Galaxy Note 7. Если пользователи оценят её удобство, она появится на десятках новых моделей смартфонов.

Источник

Аутентификация по радужной оболочке глаза — одна из биометрических технологий, используемая для проверки подлинности личности.

Детальное изображение радужной оболочки

Тип биометрической технологии, который рассматривается в данной статье, использует физиологический параметр — уникальность радужной оболочки глаза. На данный момент этот тип является одним из наиболее эффективных способов для идентификации и дальнейшей аутентификации личности [1].

История[править | править код]

Несмотря на то, что биометрические технологии (в частности, использование радужной оболочки глаза для идентификации человека) только начинают набирать популярность, первые открытия в этой области были совершены ещё в конце тридцатых годов прошлого века.

  • Первым о том, что человеческий глаз и его радужную оболочку можно использовать для распознавания личности, задумался американский глазной хирург, Франк Бурш, ещё в 1936 году [2] .
  • Но его идею и разработки удалось запатентовать только в 1987 году. Сделал это уже не сам Бурш, а офтальмологи, не имеющие собственных разработок — Леонард Флом и Аран Сафир[2].
  • В 1989 году Л. Флом и А. Сафир решили обратиться за помощью к Джону Даугману, для того, чтобы тот разработал теорию и алгоритмы распознавания. Впоследствии, именно Джона Даугмана принято считать родоначальником этого метода биометрической аутентификации [2].
  • В 1990 году Джон Даугман впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был немного позже, в 1993 году [2].
  • На этом история развития биометрической аутентификации по радужной оболочке не заканчивается. Начиная с 2002 года Даугман выпустил ещё несколько статей, каждая из которых более полно раскрывает и развивает данную технологию. Опубликованные статьи: Epigenetic randomness, complexity, and singularity of human iris patterns (2001), Gabor wavelets and statistical pattern recognition (2002), The importance of being random: Statistical principles of iris recognition (2003), Probing the uniqueness and randomness of IrisCodes: Results from 200 billion iris pair comparisons (2006), New methods in iris recognition (2007), Information Theory and the IrisCode (2015).

Радужная оболочка как биометрический параметр[править | править код]

В данном случае в качестве физиологического параметра рассматривается радужная оболочка — круглая пластинка с хрусталиком в центре, одна из трёх составляющих сосудистой (средней) оболочки глаза.

Строение человеческого глаза

Находится радужная оболочка между роговицей и хрусталиком и выполняет функцию своеобразной естественной диафрагмы, регулирующей поступление света в глаз. Радужная оболочка пигментирована, и именно количество пигмента определяет цвет глаз человека [3] .

По своей структуре радужная оболочка состоит из эластичной материи — трабекулярной сети. Это сетчатое образование, которое сформировывается к концу восьмого месяца беременности. Трабекулярная сеть состоит из углублений, гребенчатых стяжек, борозд, колец, морщин, веснушек, сосудов и других черт. Благодаря такому количеству составляющих «узор» сети довольно случаен, что ведёт к большой вероятности уникальности радужной оболочки. Даже у близнецов этот параметр не совпадает полностью [4].

Несмотря на то, что радужная оболочка глаза может менять свой цвет вплоть до полутора лет с момента рождения, узор траберкулярной сети остаётся неизменным в течение всей жизни человека. Исключением считается получение серьёзной травмы и хирургическое вмешательство [4].

Благодаря своему расположению радужная оболочка является довольно защищённой частью органа зрения, что делает её прекрасным биометрическим параметром.

Принцип работы[править | править код]

Большинство работающих в настоящее время систем и технологий идентификации по радужной оболочке глаза основаны на принципах, предложенных Дж. Даугманом в статье «High confidence visual recognition of persons by a test of statistical independence»[5] .

Полярная система координат

Процесс распознавания личности с помощью радужной оболочки глаза можно условно разделить на три основных этапа: получение цифрового изображения, сегментация и параметризация. Ниже будет рассмотрен каждый из этих этапов более подробно.

Получение изображения[править | править код]

Процесс аутентификации начинается с получения детального изображения глаза человека. Изображение для дальнейшего анализа стараются сделать в высоком качестве, но это не обязательно. Радужная оболочка настолько уникальный параметр, что даже нечёткий снимок даст достоверный результат. Для этой цели используют монохромную CCD камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению. Обычно делают серию из нескольких фотографий из-за того, что зрачок чувствителен к свету и постоянно меняет свой размер. Подсветка ненавязчива, а серия снимков делается буквально за несколько секунд. Затем из полученных фотографий выбирают одну или несколько и приступают к сегментации [6].

Сегментация[править | править код]

Сегментация занимается разделением изображения внешней части глаза на отдельные участки (сегменты). В процессе сегментации на полученной фотографии прежде всего находят радужную оболочку, определяют внутреннюю границу (около зрачка) и внешнюю границу (граница со склерой). После этого находят границы верхнего и нижнего века, а также исключают случайное наложение ресниц или блики (от очков, например) [7] .

Точность, с которой определяются границы радужки, даже если они частично скрыты веками, очень важна. Любая неточность в обнаружении, моделировании и дальнейшем представлении радужки могут привести к дальнейшим сбоям и несоответствиям [7].

После определение границ изображение радужки необходимо нормализовать. Это не совсем очевидный, но необходимый шаг, призванный компенсировать изменения размеров зрачка. В частных случаях нормализация представляет собой переход в полярную систему координат. Применил и описал это в своих ранних работах Джон Даугман [5]. После нормализации при помощи псевдо-полярных координат выделенная область изображения переходит в прямоугольник, и происходит оценка радиуса и центра радужки[8].

Параметризация[править | править код]

В ходе параметризации радужной оболочки из нормализованного изображения выделяют контрольную область. К каждой точке выбранной области применяют двухмерные волны Габора (можно применять и другие фильтры, но принцип остаётся таким же) для того, чтобы извлечь фазовую информацию. Несомненным плюсом фазовой составляющей является то, что она, в отличие от амплитудной информации, не зависит от контраста изображения и освещения [9].

Полученная фаза обычно квантуется 2 битами, но можно использовать и другое количество. Итоговая длина описания радужной оболочки, таким образом, зависит от количества точек, в которых находят фазовую информацию, и количества битов, необходимых для кодирования. В итоге мы получаем шаблон радужной оболочки, который побитно будет сверяться с другими шаблонами в процессе аутентификации. Мерой, с помощью которой определяется степень различия двух радужных оболочек, является расстояние Хэмминга[9].

Читайте также:  Периферическая дистрофия сетчатки что это

Практическое применение[править | править код]

Некоторые страны уже начали разрабатывать программу, частью которого будет являться биометрическая аутентификация по радужной оболочке глаза. Планируется, что с помощью этого нововведения будет решена проблема поддельных паспортов и других удостоверений личности. Второй целью является автоматизация прохождения паспортного контроля и таможенного досмотра при въезде в страну с помощью биометрических паспортов[10].

В Великобритании с 2004 года действовал не менее сложный по реализации проект — IRIS (Iris Recognition Immigration System). В рамках этой программы около миллиона туристов из-за рубежа, часто путешествующие в Великобританию, могли не предоставлять свои документы в аэропортах для удостоверения личности. Вместо этого специальная видеокамера сверяла их радужную оболочку глаза с уже сформированной базой. В 2013 году от этого проекта отказались в пользу биометрических паспортов, куда заносится информация и о радужной оболочке глаза [10].

Особенности и отличия от аналогов[править | править код]

Для того, чтобы та или иная характеристика человека была признана биометрическим параметром, она должна соответствовать пяти специально разработанным критериям: всеобщность, уникальность, постоянство, измеряемость  и приемлемость.

Всеобщность радужной оболочки не вызывает сомнения. Также из клинических исследований выявлена её уникальность и стабильность [11]. Что касается измеряемости, то этот пункт подтверждён  одним только существованием статей и публикаций Дж. Даугмана [5][12][13]. Последний пункт, вопрос о приемлемости, всегда будет открытым, так как зависит от мнения общества.

Таблица сравнения биометрических методов аутентификации, где H — High, M — Medium, L — Low [14]:

НазваниеВсеобщностьУникальностьПостоянствоИзмеряемостьПриемлемость
Радужная оболочкаHHHML
СетчаткаHHMLL
Отпечатки пальцевMHHMM

На данный момент ещё не создана биометрическая технология, которая полностью соответствовала бы всем пяти пунктам. Но радужная оболочка является одним из немногих параметров, которые отвечают большинству[15].

Точность метода[править | править код]

В биометрии при расчёте точности метода учитываются ошибки первого и второго рода (FAR и FRR) [16].

FAR (False Acceptance Rate) — вероятность ложного допуска объекта.

FRR (False Rejection Rate) — вероятность ложного отклонения объекта.

Эти два понятия тесно связаны, так как уменьшение одной ошибки ведёт к увеличению другой. Поэтому разработчики биометрических систем стараются прийти к некому балансу между FAR и FRR [17].

Одним из методов определения точности системы, который задействует ошибки первого и второго рода, является метод построения ROC-кривой.

ROC-кривая — это графическое представления зависимости между характеристиками FAR и FRR при варьировании порога чувствительности (threshhold) [18]. Порог чувствительности определяет, как близко должен находиться текущий образец к шаблону, чтобы считать их совпадающими. Таким образом, если выбран небольшой порог, то возрастает количество ложных допусков, но уменьшается вероятность ложного отклонения объекта. Соответственно, при выборе высокого порога всё происходит наоборот [17].

Иногда вводят новый параметр – EER.

EER (Equal Error Rate) — величина, которая характеризует уровень ошибок биометрического метода, при котором значения FAR и FRR равны . Чем меньше этот параметр, тем точнее система. Значение ERR узнают с помощью выше описанной ROC-кривой [19].

Что касается точности, непосредственно, аутентификации по радужной оболочке, то хорошим источник служит книга «Handbook of Iris Recognition». В данной работе описан эксперимент, в котором сравнивали несколько видов биометрических технологий. Исходя из этих исследований, точность аутентификации по радужной оболочке достигает 90% [20].

В ходе другой работы, выяснили, что значение FAR данного метода при определённых условиях может принимать значения от 1% и ниже, а значение FRR неизменно и стремится к нулю (0.00001%) [21].

В свою очередь, значения FAR и FRR непосредственно зависят от процессов получения и обработки изображения радужной оболочки. Большую роль в этом играют фильтры, применяемые в процессе сегментации. Из таблицы, которая представлена ниже, можно увидеть, как смена одного фильтра влияет на конечный результат [22].

Таблица параметров FAR(%), FRR(%) и EER(%) в зависимости от выбора фильтра[22]:

НазваниеFAR(%)FRR(%)EER(%)
Фильтр Габора (Gabor)0.0010.120.11
Фильтр Добеши (Daubechies)0.0012.980.2687
Фильтр Хаара (Haar)0.017.752.9

Сравнение с аутентификацией по сетчатке[править | править код]

Чаще всего люди путают такие физиологические параметры, как сетчатка и радужная оболочка глаза. Ещё чаще они объединяют два понятия в одно. Это огромное заблуждение, так как метод аутентификации по сетчатке включает в себя изучение глазного дна. Из-за длительности этого процесса и большого размера установки данный вид аутентификации сложно назвать общедоступным и удобным. В этом биометрическая аутентификация по сетчатке проигрывает аутентификации по радужной оболочке[23].

Примечания[править | править код]

  1. ↑ Р. М. Болл и др., 2007, p. 23: «Эти биометрические параметры считаются наиболее совершенными, и ожидается, что в скором времени они будут широко применяться.».
  2. 1 2 3 4 Khalid Saeed et al, 2012, p. 44.
  3. ↑ Алексеев В.Н. и др., 2008, p. 18.
  4. 1 2 Anil Jain et al, 2006, p. 105 — 106.
  5. 1 2 3 J. Daugman, 1993.
  6. ↑ Anil Jain et al, 2011, p. 144.
  7. 1 2 J. Daugman, 2007, p. 1167.
  8. ↑ Khalid Saeed et al, 2012, p. 52 — 53.
  9. 1 2 J. Daugman, 2004, p. 22 — 23.
  10. 1 2 J. Daugman, 2007, january, p. 1927.
  11. ↑ Р. М. Болл и др., 2007, p. 60.
  12. ↑ J. Daugman, 2004.
  13. ↑ J. Daugman, 2007.
  14. ↑ Anil Jain et al, 2004.
  15. ↑ Р. М. Болл и др., 2007, p. 22.
  16. ↑ Rajesh M. et al, 2014, p. 3.
  17. 1 2 Anil Jain et al, 2004, p. 6.
  18. ↑ A. J. Mansfield et al, 2002, p. 7 — 8.
  19. ↑ Rajesh M. et al, 2014, p. 5.
  20. ↑ Mark J. Burge et al, 2013.
  21. ↑ Dr. Chander Kant et al, 2011.
  22. 1 2 José Ruiz-Shulcloper et al, 2008, p. 91 — 92.
  23. ↑ Р. М. Болл и др., 2007, p. 23.

Литература[править | править код]

  • L. Flom, A. Safir US Patent 4641349
  • Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 20 — 63. — 368 с. — ISBN 978-5-94836-109-3.
  • Khalid Saeed, Tomomasa Nagashima. Chapter 3. Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection // Biometrics and Kansei Engineering. — Springer Science & Business Media, 2012. — P. 43 — 65. — 276 p. — ISBN 978-1-461-45607-0.
  • Anil Jain, Arun A. Ross, Karthik Nandakumar. Chapter 4 Iris Recognition // Introduction to Biometrics.. — Springer Science & Business Media, 2011. — P. 141-175. — 276 p. — ISBN 978-0-387-77326-1.
  • Rajesh M. Bodade, Sanjay Talbar. Introduction to Iris Recognition // Iris Analysis for Biometric Recognition Systems. — Springer, 2014. — P. 3 — 5. — 109 p. — ISBN 978-8-132-21853-1.
  • Anil Jain, Ruud Bolle, Sharath Pankanti. Recognising Persons by Their Iris Patterns // Biometrics: Personal Identification in Networked Society. — Springer Science & Business Media, 2006. — P. 102 — 122. — 411 p.
  • José Ruiz-Shulcloper, Walter Kropatsch. An Alternative Image Representation Model for Iris Recognition // Progress in Pattern Recognition, Image Analysis and Applications. — Springer Science & Business Media, 2008. — P. 86 — 93. — 814 p.
  • A. J. Mansfield, J. L. Wayman. Definitions // Best Practices in Testing and Reporting Performance of Biometric De