Пропуск по сетчатке глаза

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка — один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного Глазиндивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа, так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify’s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка Идентификатор по сетчатке глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в том числе Sensar, British Telecom и японская OKI.
Получаемое при сканировании радужной оболочки глаза изображение обычно оказывается более информативным, чем оцифрованное в случае сканирования отпечатков пальцев.
Уникальность рисунка радужной оболочки глаза позволяет выпускать фирмам целый класс весьма надежных систем для биометрической идентификации личности. Для считывания узора радужной оболочки глаза применяется дистанционный способ снятия биометрической характеристики.
Системы этого класса, используя обычные видеокамеры, захватывают видеоизображение глаза на расстоянии до одного метра от видеокамеры, осуществляют автоматическое выделение зрачка и радужной оболочки. Пропускная способность таких систем очень высокая. Вероятность же ложных срабатываний небольшая. Кроме этого, предусмотрена защита от муляжа. Они воспринимают только глаз живого человека. Еще одно достоинство этого метода идентификации — высокая помехоустойчивость. На работоспособность системы не влияют очки, контактные линзы и солнечные блики.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Даже у людей с ослабленным зрением, но с неповрежденной радужной оболочкой, все равно могут сканироваться и кодироваться идентифицирующие параметры. Даже если есть катаракта (повреждение хрусталика глаза, которое находится позади радужной оболочки), то и она никак не влияет на процесс сканирования радужной оболочки. Однако плохая фокусировка камеры, солнечный блик и другие трудности при распознавании приводят к ошибкам в 1% случаев.
В качестве такого устройства идентификации можно привести, например, электронную систему контроля доступа «Iris Access 3000», созданную компанией LG. Эта система за считанные секунды считывает рисунок оболочки, оцифровывает его, сравнивает с 4000 других записей, которые она способна хранить в своей памяти, и посылает соответствующий сигнал в систему безопасности, в которую она интегрирована. Система очень проста в эксплуатации, но при этом, данная технология
обеспечивает высокую степень защищенности.
Считыватель сетчатки объекта. Модель ICAM 2001. В состав системы входят:
устройство регистрации пользователей EOU 3000;
оптическое устройство идентификации / оптический считыватель ROU 3000;
контроллер двери ICU 3000;
сервер.
Устройство регистрации пользователей EOU 3000 обеспечивает начальный этап процесса регистрации пользователей. Оно снимает изображение радужной оболочки глаза при помощи камеры и подсветки. В процессе получения изображения и при его завершении устройство использует голосовую и световую подсказку.
Оптическое устройство идентификации, оно же оптический считыватель ROU 3000, содержит элементы для получения изображения радужной оболочки глаза. Голосовая и световая индикация информирует пользователя, определен он системой или нет.Идентификатор по сетчатке глаз
Контроллер двери ICU 3000 создает специальный код (IrisCode) изображения сетчатки глаза, получаемой от считывателя ROU, сравнивает этоткод с уже имеющимися в его памяти кодами изображений. При идентификации соответствующего кода, результат сообщается голосом из динамика в считывателе ROU
3000. К контроллеру возможно подключение до четырех считывателей ROD 3000, что обеспечивает управление четырьмя дверями.
Сервер выполнен на базе персонального компьютера. Он выполняет функции главного сервера, сервера,
станции регистрации пользователей, станции мониторинга и управления системой. Главный сервер контролирует передачу информации из базы данных по запросу от одного сервера другим серверам. Сервер отвечает за управление рабочими станциями и контроллерами дверей ICU. Станция ввода изображения обеспечивает регистрацию пользователей при помощи устройства EOU 3000. Станция мониторинга производит отслеживание статуса контроллеров ICU, оптических считывателей ROU? устройства регистрации и состояния дверей ROU. Станция управления обеспечивает поддержку основной базы данных пользователей, загрузку необходимых данных в контроллер ICU.
Пример построения системы доступа на основе электронной системы распознавания радужной оболочки глаза «Iris Access 3000» представлен на рисунке.

Читайте также:  Повторный разрыв сетчатки глаза

Перспективы распространения этого способа биометрической идентификации для организации доступа в компьютерных системах очень хорошие. Тем более, что сейчас уже существуют мультимедийные мониторы со встроенными в корпус видеокамерами. Поэтому на такой компьютер достаточно установить необходимое программное обеспечение, и система контроля доступа готова к работе. Понятно, что и ее стоимость при этом будет не очень высокой.

Источник

Аутентификация по радужной оболочке глаза — одна из биометрических технологий, используемая для проверки подлинности личности.

Детальное изображение радужной оболочки

Тип биометрической технологии, который рассматривается в данной статье, использует физиологический параметр — уникальность радужной оболочки глаза. На данный момент этот тип является одним из наиболее эффективных способов для идентификации и дальнейшей аутентификации личности [1].

История[править | править код]

Несмотря на то, что биометрические технологии (в частности, использование радужной оболочки глаза для идентификации человека) только начинают набирать популярность, первые открытия в этой области были совершены ещё в конце тридцатых годов прошлого века.

  • Первым о том, что человеческий глаз и его радужную оболочку можно использовать для распознавания личности, задумался американский глазной хирург, Франк Бурш, ещё в 1936 году [2] .
  • Но его идею и разработки удалось запатентовать только в 1987 году. Сделал это уже не сам Бурш, а офтальмологи, не имеющие собственных разработок — Леонард Флом и Аран Сафир[2].
  • В 1989 году Л. Флом и А. Сафир решили обратиться за помощью к Джону Даугману, для того, чтобы тот разработал теорию и алгоритмы распознавания. Впоследствии, именно Джона Даугмана принято считать родоначальником этого метода биометрической аутентификации [2].
  • В 1990 году Джон Даугман впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был немного позже, в 1993 году [2].
  • На этом история развития биометрической аутентификации по радужной оболочке не заканчивается. Начиная с 2002 года Даугман выпустил ещё несколько статей, каждая из которых более полно раскрывает и развивает данную технологию. Опубликованные статьи: Epigenetic randomness, complexity, and singularity of human iris patterns (2001), Gabor wavelets and statistical pattern recognition (2002), The importance of being random: Statistical principles of iris recognition (2003), Probing the uniqueness and randomness of IrisCodes: Results from 200 billion iris pair comparisons (2006), New methods in iris recognition (2007), Information Theory and the IrisCode (2015).

Радужная оболочка как биометрический параметр[править | править код]

В данном случае в качестве физиологического параметра рассматривается радужная оболочка — круглая пластинка с хрусталиком в центре, одна из трёх составляющих сосудистой (средней) оболочки глаза.

Строение человеческого глаза

Находится радужная оболочка между роговицей и хрусталиком и выполняет функцию своеобразной естественной диафрагмы, регулирующей поступление света в глаз. Радужная оболочка пигментирована, и именно количество пигмента определяет цвет глаз человека [3] .

По своей структуре радужная оболочка состоит из эластичной материи — трабекулярной сети. Это сетчатое образование, которое сформировывается к концу восьмого месяца беременности. Трабекулярная сеть состоит из углублений, гребенчатых стяжек, борозд, колец, морщин, веснушек, сосудов и других черт. Благодаря такому количеству составляющих «узор» сети довольно случаен, что ведёт к большой вероятности уникальности радужной оболочки. Даже у близнецов этот параметр не совпадает полностью [4].

Несмотря на то, что радужная оболочка глаза может менять свой цвет вплоть до полутора лет с момента рождения, узор траберкулярной сети остаётся неизменным в течение всей жизни человека. Исключением считается получение серьёзной травмы и хирургическое вмешательство [4].

Благодаря своему расположению радужная оболочка является довольно защищённой частью органа зрения, что делает её прекрасным биометрическим параметром.

Принцип работы[править | править код]

Большинство работающих в настоящее время систем и технологий идентификации по радужной оболочке глаза основаны на принципах, предложенных Дж. Даугманом в статье «High confidence visual recognition of persons by a test of statistical independence»[5] .

Читайте также:  Продукты при заболевании сетчатки

Полярная система координат

Процесс распознавания личности с помощью радужной оболочки глаза можно условно разделить на три основных этапа: получение цифрового изображения, сегментация и параметризация. Ниже будет рассмотрен каждый из этих этапов более подробно.

Получение изображения[править | править код]

Процесс аутентификации начинается с получения детального изображения глаза человека. Изображение для дальнейшего анализа стараются сделать в высоком качестве, но это не обязательно. Радужная оболочка настолько уникальный параметр, что даже нечёткий снимок даст достоверный результат. Для этой цели используют монохромную CCD камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению. Обычно делают серию из нескольких фотографий из-за того, что зрачок чувствителен к свету и постоянно меняет свой размер. Подсветка ненавязчива, а серия снимков делается буквально за несколько секунд. Затем из полученных фотографий выбирают одну или несколько и приступают к сегментации [6].

Сегментация[править | править код]

Сегментация занимается разделением изображения внешней части глаза на отдельные участки (сегменты). В процессе сегментации на полученной фотографии прежде всего находят радужную оболочку, определяют внутреннюю границу (около зрачка) и внешнюю границу (граница со склерой). После этого находят границы верхнего и нижнего века, а также исключают случайное наложение ресниц или блики (от очков, например) [7] .

Точность, с которой определяются границы радужки, даже если они частично скрыты веками, очень важна. Любая неточность в обнаружении, моделировании и дальнейшем представлении радужки могут привести к дальнейшим сбоям и несоответствиям [7].

После определение границ изображение радужки необходимо нормализовать. Это не совсем очевидный, но необходимый шаг, призванный компенсировать изменения размеров зрачка. В частных случаях нормализация представляет собой переход в полярную систему координат. Применил и описал это в своих ранних работах Джон Даугман [5]. После нормализации при помощи псевдо-полярных координат выделенная область изображения переходит в прямоугольник, и происходит оценка радиуса и центра радужки[8].

Параметризация[править | править код]

В ходе параметризации радужной оболочки из нормализованного изображения выделяют контрольную область. К каждой точке выбранной области применяют двухмерные волны Габора (можно применять и другие фильтры, но принцип остаётся таким же) для того, чтобы извлечь фазовую информацию. Несомненным плюсом фазовой составляющей является то, что она, в отличие от амплитудной информации, не зависит от контраста изображения и освещения [9].

Полученная фаза обычно квантуется 2 битами, но можно использовать и другое количество. Итоговая длина описания радужной оболочки, таким образом, зависит от количества точек, в которых находят фазовую информацию, и количества битов, необходимых для кодирования. В итоге мы получаем шаблон радужной оболочки, который побитно будет сверяться с другими шаблонами в процессе аутентификации. Мерой, с помощью которой определяется степень различия двух радужных оболочек, является расстояние Хэмминга[9].

Практическое применение[править | править код]

Некоторые страны уже начали разрабатывать программу, частью которого будет являться биометрическая аутентификация по радужной оболочке глаза. Планируется, что с помощью этого нововведения будет решена проблема поддельных паспортов и других удостоверений личности. Второй целью является автоматизация прохождения паспортного контроля и таможенного досмотра при въезде в страну с помощью биометрических паспортов[10].

В Великобритании с 2004 года действовал не менее сложный по реализации проект — IRIS (Iris Recognition Immigration System). В рамках этой программы около миллиона туристов из-за рубежа, часто путешествующие в Великобританию, могли не предоставлять свои документы в аэропортах для удостоверения личности. Вместо этого специальная видеокамера сверяла их радужную оболочку глаза с уже сформированной базой. В 2013 году от этого проекта отказались в пользу биометрических паспортов, куда заносится информация и о радужной оболочке глаза [10].

Особенности и отличия от аналогов[править | править код]

Для того, чтобы та или иная характеристика человека была признана биометрическим параметром, она должна соответствовать пяти специально разработанным критериям: всеобщность, уникальность, постоянство, измеряемость  и приемлемость.

Всеобщность радужной оболочки не вызывает сомнения. Также из клинических исследований выявлена её уникальность и стабильность [11]. Что касается измеряемости, то этот пункт подтверждён  одним только существованием статей и публикаций Дж. Даугмана [5][12][13]. Последний пункт, вопрос о приемлемости, всегда будет открытым, так как зависит от мнения общества.

Таблица сравнения биометрических методов аутентификации, где H — High, M — Medium, L — Low [14]:

НазваниеВсеобщностьУникальностьПостоянствоИзмеряемостьПриемлемость
Радужная оболочкаHHHML
СетчаткаHHMLL
Отпечатки пальцевMHHMM

На данный момент ещё не создана биометрическая технология, которая полностью соответствовала бы всем пяти пунктам. Но радужная оболочка является одним из немногих параметров, которые отвечают большинству[15].

Точность метода[править | править код]

В биометрии при расчёте точности метода учитываются ошибки первого и второго рода (FAR и FRR) [16].

FAR (False Acceptance Rate) — вероятность ложного допуска объекта.

FRR (False Rejection Rate) — вероятность ложного отклонения объекта.

Эти два понятия тесно связаны, так как уменьшение одной ошибки ведёт к увеличению другой. Поэтому разработчики биометрических систем стараются прийти к некому балансу между FAR и FRR [17].

Одним из методов определения точности системы, который задействует ошибки первого и второго рода, является метод построения ROC-кривой.

ROC-кривая — это графическое представления зависимости между характеристиками FAR и FRR при варьировании порога чувствительности (threshhold) [18]. Порог чувствительности определяет, как близко должен находиться текущий образец к шаблону, чтобы считать их совпадающими. Таким образом, если выбран небольшой порог, то возрастает количество ложных допусков, но уменьшается вероятность ложного отклонения объекта. Соответственно, при выборе высокого порога всё происходит наоборот [17].

Иногда вводят новый параметр – EER.

EER (Equal Error Rate) — величина, которая характеризует уровень ошибок биометрического метода, при котором значения FAR и FRR равны . Чем меньше этот параметр, тем точнее система. Значение ERR узнают с помощью выше описанной ROC-кривой [19].

Читайте также:  Будет ли возможным замена сетчатки глаза

Что касается точности, непосредственно, аутентификации по радужной оболочке, то хорошим источник служит книга «Handbook of Iris Recognition». В данной работе описан эксперимент, в котором сравнивали несколько видов биометрических технологий. Исходя из этих исследований, точность аутентификации по радужной оболочке достигает 90% [20].

В ходе другой работы, выяснили, что значение FAR данного метода при определённых условиях может принимать значения от 1% и ниже, а значение FRR неизменно и стремится к нулю (0.00001%) [21].

В свою очередь, значения FAR и FRR непосредственно зависят от процессов получения и обработки изображения радужной оболочки. Большую роль в этом играют фильтры, применяемые в процессе сегментации. Из таблицы, которая представлена ниже, можно увидеть, как смена одного фильтра влияет на конечный результат [22].

Таблица параметров FAR(%), FRR(%) и EER(%) в зависимости от выбора фильтра[22]:

НазваниеFAR(%)FRR(%)EER(%)
Фильтр Габора (Gabor)0.0010.120.11
Фильтр Добеши (Daubechies)0.0012.980.2687
Фильтр Хаара (Haar)0.017.752.9

Сравнение с аутентификацией по сетчатке[править | править код]

Чаще всего люди путают такие физиологические параметры, как сетчатка и радужная оболочка глаза. Ещё чаще они объединяют два понятия в одно. Это огромное заблуждение, так как метод аутентификации по сетчатке включает в себя изучение глазного дна. Из-за длительности этого процесса и большого размера установки данный вид аутентификации сложно назвать общедоступным и удобным. В этом биометрическая аутентификация по сетчатке проигрывает аутентификации по радужной оболочке[23].

Примечания[править | править код]

  1. ↑ Р. М. Болл и др., 2007, p. 23: «Эти биометрические параметры считаются наиболее совершенными, и ожидается, что в скором времени они будут широко применяться.».
  2. 1 2 3 4 Khalid Saeed et al, 2012, p. 44.
  3. ↑ Алексеев В.Н. и др., 2008, p. 18.
  4. 1 2 Anil Jain et al, 2006, p. 105 — 106.
  5. 1 2 3 J. Daugman, 1993.
  6. ↑ Anil Jain et al, 2011, p. 144.
  7. 1 2 J. Daugman, 2007, p. 1167.
  8. ↑ Khalid Saeed et al, 2012, p. 52 — 53.
  9. 1 2 J. Daugman, 2004, p. 22 — 23.
  10. 1 2 J. Daugman, 2007, january, p. 1927.
  11. ↑ Р. М. Болл и др., 2007, p. 60.
  12. ↑ J. Daugman, 2004.
  13. ↑ J. Daugman, 2007.
  14. ↑ Anil Jain et al, 2004.
  15. ↑ Р. М. Болл и др., 2007, p. 22.
  16. ↑ Rajesh M. et al, 2014, p. 3.
  17. 1 2 Anil Jain et al, 2004, p. 6.
  18. ↑ A. J. Mansfield et al, 2002, p. 7 — 8.
  19. ↑ Rajesh M. et al, 2014, p. 5.
  20. ↑ Mark J. Burge et al, 2013.
  21. ↑ Dr. Chander Kant et al, 2011.
  22. 1 2 José Ruiz-Shulcloper et al, 2008, p. 91 — 92.
  23. ↑ Р. М. Болл и др., 2007, p. 23.

Литература[править | править код]

  • L. Flom, A. Safir US Patent 4641349
  • Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 20 — 63. — 368 с. — ISBN 978-5-94836-109-3.
  • Khalid Saeed, Tomomasa Nagashima. Chapter 3. Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection // Biometrics and Kansei Engineering. — Springer Science & Business Media, 2012. — P. 43 — 65. — 276 p. — ISBN 978-1-461-45607-0.
  • Anil Jain, Arun A. Ross, Karthik Nandakumar. Chapter 4 Iris Recognition // Introduction to Biometrics.. — Springer Science & Business Media, 2011. — P. 141-175. — 276 p. — ISBN 978-0-387-77326-1.
  • Rajesh M. Bodade, Sanjay Talbar. Introduction to Iris Recognition // Iris Analysis for Biometric Recognition Systems. — Springer, 2014. — P. 3 — 5. — 109 p. — ISBN 978-8-132-21853-1.
  • Anil Jain, Ruud Bolle, Sharath Pankanti. Recognising Persons by Their Iris Patterns // Biometrics: Personal Identification in Networked Society. — Springer Science & Business Media, 2006. — P. 102 — 122. — 411 p.
  • José Ruiz-Shulcloper, Walter Kropatsch. An Alternative Image Representation Model for Iris Recognition // Progress in Pattern Recognition, Image Analysis and Applications. — Springer Science & Business Media, 2008. — P. 86 — 93. — 814 p.
  • A. J. Mansfield, J. L. Wayman. Definitions // Best Practices in Testing and Reporting Performance of Biometric Devices: Version 2.01. — Centre for Mathematics and Scientific Computing, National Physical Laboratory, 2002. — P. 7 — 8. — 32 p.
  • Mark J. Burge, Kevin Bowyer. Fusion of Face and Iris Biometrics // Handbook of Iris Recognition. — Springer-Verlag London, 2013. — P. 234. — 399 p.
  • J. Daugman. High confidence visual recognition of persons by a test of statistical independence (англ.) // IEEE Transactions on Pattern Analysis and Machine Intelligence. — 1993. — Vol. 15, no. 11. — P. 1148 — 1161.
  • J. Daugman. How iris recognition works (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 21 — 30.
  • J. Daugman. New Methods in Iris Recognition (англ.) // IEEE Trans. Systems, Man, and Cybernetics. — 2007. — Vol. 37, no. 5. — P. 1167 — 1175.
  • J. Daugman. Probing the Uniqueness and Randomness of IrisCodes: Results From 200 Billion Iris Pair Comparisons (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2007, january. — Vol. 94, no. 11. — P. 1927 — 1935.
  • Anil Jain, Arun Ross and Salil Prabhakar. An Introduction to Biometric Recognition (англ.) // IEEE Transactions on Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 4 — 20.
  • Dr. Chander Kant, Sachin Gupta. Iris Recognition: The Safest Biometric (англ.) // An International Journal of Engineering Sciences ISSN. — 2011. — Vol. 4. — P. 265 — 273.
  • Алексеев В.Н., Астахов Ю.С., Басинский С.Н. Глава 2. Анатомия органа зрения // Офтальмология: Учебник для студ. мед. вузов / Е.А.Егоров. — М.: ГЭОТАР-Медиа, 2008. — С. 12 — 29. — 240 с.
  • Павельева Е. А., Крылов А. С. Алгоритм сравнения изображений радужной оболочки глаза на основе ключевых точек (рус.) // Информатика и её применения. — 2011. — Т. 5, № 1. — С. 68 — 72.

Источник