Преломление лучей в сетчатке глаза
Краткое описание:
Биофизика движения светового раздражения к фоторецепторам глаза.
Структура человеческого глаза
Человеческий глаз — замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света. Диапазон воспринимаемых глазом интенсивностей составляет , фокус может быстро перемещаться от очень короткого расстояния до бесконечности.
Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности. Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см. Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой. Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока. В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине. Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.
Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока. Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой. За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом.
Внутренняя поверхность глазного яблока покрыта сетчаткой, которая содержит многочисленные нервные клетки — зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы. Наиболее чувствительной областью сетчатки является желтое пятно, где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки. Глаз вращается, чтобы рассмотреть изучаемый объект.
Рис. 1. Глаз человека
Преломление в глазе
Глаз является оптическим эквивалентом обычной фотографической камеры. В нем есть система линз, апертурная система (зрачок) и сетчатка, на которой фиксируется изображение.
Система линз глаза сформирована из четырех преломляющих сред: роговицы, водяной камеры, хрусталика, стеклянного тела. Показатели их преломления не имеют значительных отличий. Они составляют 1,38 для роговицы, 1,33 для водяной камеры, 1,40 для хрусталика и 1,34 для стекловидного тела (рис. 2).
Рис. 2. Глаз как система преломляющих сред (числа являются показателями преломления)
В этих четырех преломляющих поверхностях происходит преломление света: 1) между воздухом и передней поверхностью роговицы; 2) между задней поверхностью роговицы и водяной камерой; 3) между водяным камерой и передней поверхностью хрусталика; 4) между задней поверхностью хрусталика и стекловидным телом.
Наиболее сильное преломление происходит на передней поверхности роговицы. Роговица имеет небольшой радиус кривизны, и показатель преломления роговицы в наибольшей степени отличается от показателя преломления воздуха.
Преломляющая способность хрусталика меньше, чем у роговицы. Она составляет около одной трети общей преломляющей мощности систем линз глаза. Причина этого различия в том, что жидкости, окружающие хрусталик, имеют показатели преломления, которые существенно не отличаются от показателя преломления хрусталика. Если хрусталик удалить из глаза, окруженный воздухом он имеет показатель преломления почти в шесть раз больший, чем в глазе.
Хрусталик выполняет очень важную функцию. Его кривизна может изменяться, что обеспечивает тонкое фокусирование на объекты, расположенные на различных расстояниях от глаза.
Редуцированный глаз
Редуцированный глаз является упрощенной моделью реального глаза. Он схематически представляет оптическую систему нормального глаза человека. Редуцированный глаз представлен единственной линзой (одной преломляющей средой). В редуцированном глазе все преломляющие поверхности реального глаза суммируются алгебраически, формируя единственную преломляющую поверхность.
Редуцированный глаз позволяет провести простые вычисления. Общая преломляющая способность сред составляет почти 59 диоптрий, когда линза аккомодирована на зрение отдаленных объектов. Центральная точка редуцированного глаза лежит впереди сетчатки на 17 миллиметров. Луч из любой точки объекта приходит в редуцированный глаз и проходит через центральную точку без преломления. Так же, как стеклянная линза формирует изображение на листе бумаги, система линз глаза образует изображение на сетчатке. Это уменьшенное, действительное, перевернутое изображение объекта. Головной мозг формирует восприятие объекта в прямом положении и в реальном размере.
Аккомодация
Для ясного видения объекта необходимо, чтобы после преломления лучей, изображение формировалось на сетчатке. Изменение преломляющей силы глаза для фокусировки близких и отдаленных объектов называется аккомодацией.
Наиболее отдаленная точка, на которую фокусируется глаз, называется дальней точкой видения — бесконечность. В этом случае параллельные лучи, входящие в глаз, фокусируются на сетчатку.
Объект виден в деталях, когда он установлен как можно ближе к глазу. Минимальное расстояние четкого видения – около 7 см при нормальном зрении. В этом случае аппарат аккомодации находится в максимально напряжённом состоянии.
Точка, расположенная на расстоянии 25см, называется точкой наилучшего видения, поскольку в данном случае различимы все детали рассматриваемого объекта без максимального напряжения аппарата аккомодации, вследствие чего глаз может длительное время не утомляться.
Если глаз сфокусирован на объект в ближней точке, он должен отрегулировать свое фокусное расстояние и увеличить преломляющую силу. Этот процесс происходит путем изменений формы хрусталика. Когда объект подносят ближе к глазу, форма хрусталика изменяется от формы умеренно выпуклой линзы в форму выпуклой линзы.
Хрусталик образован волокнистым желеобразным веществом. Он окружен прочной гибкой капсулой и имеет специальные связки, идущие от края линзы к внешней поверхности глазного яблока. Эти связки постоянно напряжены. Форма хрусталика изменяется цилиарной мышцей. Сокращение этой мышцы уменьшает натяжение капсулы хрусталика, он становится более выпуклым и из-за естественной эластичности капсулы принимает сферическую форму. И наоборот, когда цилиарная мышца полностью расслаблена, преломляющая сила линзы наиболее слабая. С другой стороны, когда цилиарная мышца находится в максимально сокращенном состоянии, преломляющая сила линзы становится наибольшей. Этот процесс управляется центральной нервной системой.
Рис. 3. Аккомодация в нормальном глазе
Старческая дальнозоркость
Преломляющая сила хрусталика может увеличиваться от 20 диоптрий до 34 диоптрий у детей. Средняя аккомодация составляет 14 диоптрий. В результате общая преломляющая сила глаза составляет почти 59 диоптрий, когда глаз аккомодирован для дальнего зрения, и 73 диоптрия — при максимальной аккомодации.
При старении человека хрусталик становиться более толстым и менее эластичным. Следовательно, способность линзы изменять свою форму уменьшается с возрастом. Сила аккомодации уменьшается от 14 диоптрий у ребенка до менее 2 диоптрий в возрасте от 45 до 50 лет и становится равной 0 в возрасте 70 лет. Поэтому линза почти не аккомодируется. Это нарушение аккомодации называется старческой дальнозоркостью. Глаза при этом сфокусированы всегда на постоянном расстоянии. Они не могут аккомодироваться как для ближнего, так и дальнего зрения. Следовательно, чтобы видеть ясно на различных расстояниях, старый человек должен носить бифокальные очки с верхним сегментом, сфокусированным для дальнего видения, и более низким сегментом, сфокусированным для ближнего видения.
Ошибки преломления
Эмметропия. Считается, что глаз будет нормальным (эмметропичным), если параллельные световые лучи с отдаленных объектов фокусируются в сетчатку при полном расслаблении цилиарной мышцы. Такой глаз видит ясно отдаленные объекты, когда расслаблена цилиарная мышца, то есть без аккомодации. При фокусировании объектов ближнего диапазона расстояний в глазе сокращается цилиарная мышца, обеспечивая подходящую степень аккомодации.
Рис. 4. Преломление параллельных световых лучей в глазе человека.
Гиперметропия (гиперопия). Гиперметропия также известна как дальнозоркость. Она обусловлена либо малым размером глазного яблока, либо слабой преломляющей силой системы линз глаза. В таких условиях параллельные световые лучи не преломляются системой линз глаза достаточно для того, чтобы фокус (соответственно изображение) находился на сетчатке. Для преодоления этой аномалии цилиарная мышца должна сократиться, увеличив оптическую силу глаза. Следовательно, дальнозоркий человек способен фокусировать отдаленные объекты на сетчатке, используя механизм аккомодации. Для видения более близких объектов мощности аккомодации не хватает.
При небольшом резерве аккомодации дальнозоркий человек часто не способный аккомодировать глаз достаточно для фокусирования не только близких, но даже отдаленных объектов.
Для коррекции дальнозоркости необходимо увеличить преломляющую силу глаза. Для этого используют выпуклые линзы, которые добавляют преломляющую силу к силе оптической системе глаза.
Миопия. При миопии (или близорукости) параллельные световые лучи с отдаленных объектов фокусируются перед сетчаткой, несмотря на то, что цилиарная мышца полностью расслаблена. Это бывает из-за слишком длинного глазного яблока, а также вследствие слишком высокой преломляющей силы оптической системы глаза.
Нет механизма, с помощью которого глаз мог бы уменьшить преломляющую силу своего хрусталика менее, чем возможно при полном расслаблении цилиарной мышцы. Процесс аккомодации приводит к ухудшению видения. Следовательно, человек с миопией не может фокусировать отдаленные объекты на сетчатку. Изображение может сфокусироваться только, если объект находится достаточно близко от глаза. Следовательно, у человека с миопией ограничена дальняя точка ясного видения.
Известно, что лучи, проходящие через вогнутую линзу, преломляются. Если преломляющая сила глаза слишком велика, как при миопии, иногда она может быть нейтрализована вогнутой линзой. Используя лазерную технику, можно также откорректировать слишком большую выпуклость роговицы.
Астигматизм. В астигматическом глазе преломляющая поверхность роговицы является не сферической, а эллипсоидальной. Это происходит из-за слишком большой кривизны роговицы в одной из своих плоскостей. В результате световые лучи, проходящие через роговицу в одной плоскости, не преломляются так же сильно, как лучи, проходящие через нее в другой плоскости. Они не собираются в общем фокусе. Астигматизм не может компенсироваться глазом с помощью аккомодации, но корректировать его можно с помощью цилиндрической линзы, которая исправит ошибку в одной из плоскостей.
Коррекция оптических аномалий контактными линзами
Недавно для коррекции различных аномалий зрения стали использовать пластические контактные линзы. Они устанавливаются против передней поверхности роговицы и фиксируются тонким слоем слез, который заполняет пространство между контактной линзой и роговицей. Жесткие контактные линзы делают из жесткой пластмассы. Их размеры составляют 1мм в толщину и 1см в диаметре. Также существуют мягкие контактные линзы.
Контактные линзы заменяют роговицу как внешнюю сторону глаза и почти полностью аннулируют долю преломляющей способности глаза, которая происходит в норме на передней поверхности роговицы. При использовании контактных линз передняя поверхность роговицы не играет значимой роли в преломлении глаза. Основную роль начинает выполнять передняя поверхность контактной линзы. Особенно важно это у лиц с ненормально сформированной роговицей.
Другой особенностью контактных линз является то, что, поворачиваясь вместе с глазом, они дают более широкую область ясного видения, чем это делают обычные очки. Они являются также более удобными в использовании для художников, спортсменов и т.п.
Острота зрения
Способность человеческого глаза ясно видеть мелкие детали ограничена. Нормальный глаз может различать различные точечные источники света, расположенные на расстоянии 25 секунд дуги. То есть, когда световые лучи с двух отдельных точек попадают в глаз под углом более 25 секунд между ними, они видны в качестве двух точек. Лучи с меньшим угловым разделением не могут быть различены. Это означает, что человек с нормальной остротой зрения может различить две точки света на расстоянии 10 метров, если они друг от друга находятся на расстоянии 2 миллиметра.
Рис. 7. Максимальная острота зрения для двух точечных источников света.
Наличие этого предела предусмотрено структурой сетчатки. Средний диаметр рецепторов в сетчатке составляет почти 1,5 микрометров. Человек может нормально различить две отдельные точки, если в сетчатке расстояние между ними составляет 2 микрометра. Таким образом, чтобы различать два небольших объекта, они должны возбудить две разных колбочки. По крайней мере, между ними один будет находиться 1 невозбужденная колбочка.
Источники:
https://www.all-fizika.com/article/index.php?id_article=1982
Источник
Первую сою статью я начну с того, что расскажу вам о зрительном органе нашего организма это глаз.
Глаз – орган зрительной системы человека, обладающий способностью воспринимать свет и обеспечивать функцию зрения. У человека через глаз поступает 90% информации из окружающего мира.
Роговица – это природная линза, это передняя, наиболее выпуклая прозрачная часть глазного яблока. Роговица не содержит кровеносных сосудов, но имеет нервные окончания. Помимо защитной функции, она также выполняет функцию преломления света.
Склера – задняя, непрозрачная, белесоватая внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся глазодвигательные мышцы.
Радужная оболочка (радужка) – это «живая» диафрагма. Находится между роговицей и хрусталиком. Имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело, а внутренним ограничивает отверстие зрачка.
Хрусталик («живая линза») — прозрачное эластичное образование в капсуле, имеющее форму двояковыпуклой линзы. Хрусталик обладает интересной особенностью – с помощью связок и мышц вокруг, он может изменять свою кривизну, что, в свою очередь, изменяет направление световых лучей.
Цилиарная мышца – внутренняя парная мышца глаза, которая обеспечивает аккомодацию. С помощью цилиарной мышцы происходит изменение кривизны хрусталика и человек может четко видеть предметы на различных расстояниях.
Стекловидное тело – гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза, за хрусталиком. Поддерживает форму глазного яблока, принимает участие в преломлении световых лучей.
Сетчатка – рецепторная часть зрительного анализатора. Здесь происходят восприятие света и передача информации в центральную нервную систему.
В сетчатке мы можем найти главные для нас элементы:
· Фоторецепторы – палочки и колбочки. Представляют собой нейроны с отростками разной формы. Палочки отвечают за сумеречное и ночное зрение, колбочки – за остроту зрения и цветовосприятие (дневное зрение).
· Диск выхода зрительного нерва – место выхода из глаза зрительного нерва. Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. По зрительному нерву импульсы попадают в наш головной мозг, который и формирует изображение.
· Жёлтое пятно (макула) – находится на сетчатке, как правило, напротив зрачка. При нормальной работе глаза лучи света должны фокусироваться четко на макуле.
За счет чего же движется глаз ?
Он самый подвижный из всех органов человеческого организма.Различные движения глаза, повороты в стороны, вверх, вниз, обеспечивают глазодвигательные мышцы, расположенные в глазнице.Всего их 6: 4 прямые мышцы крепятся к передней части склеры и 2 косые, прикрепляются к задней части склеры.
Зрительные функции.
Зрение — это основная функция глаз, которая складывается из нескольких этапов.
Свет, который отражается от предметов, движется в глаз. Далее он проходит и преломляется через роговицу, хрусталик, стекловидное тело и попадает на сетчатку.
Бинокулярное зрение – это способность зрительной системы воспринимать изображения одновременно двумя глазами, как единый объёмный образ.
Нормальное бинокулярное зрение возможно при определённых условиях:
· согласованная работа всех глазодвигательных мышц, обеспечивающая параллельное положение глазных яблок при взгляде вдаль и соответствующее сведение зрительных осей (конвергенция) при взгляде вблизи, а также правильные ассоциированные движения глаз в направлении рассматриваемого объекта.
· расположение глаз в одной фронтальной и горизонтальной плоскости.
· острота зрения обоих глаз не менее 0,3-0,4, т.е. достаточная для формирования чёткого изображения на сетчатке.
равные величины изображений на сетчатке обоих глаз (при анизометропии до 2,0 Дптр).
Анизометропия – это когда у человека глаза имеют разную рефракцию, например, левый -2.0 Дптр, а правый -1.5 Дптр. В таком примере анизометропия составит 0,5 Дптр.
Конвергенция и дивергенция.
При рассматривании предметов, глаза человека движутся координированно. Такие движения глаз называются содружественными.
При рассматривании близко расположенных предметов зрительные оси глаз сближаются (сводятся) – этот процесс называется конвергенцией.
При рассматривании предметов вдалеке, положение зрительных осей приближается к параллельному – данное разведение осей называется дивергенция.
Аккомодация.
За счет изменения формы хрусталика происходит фокусировка изображения. Хрусталик меняет кривизну в зависимости от расстояния между глазом и предметом (аккомодация глаза).
Аккомодация – это способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза. Количественно аккомодацию характеризуют две величины: длина (расстояние между ближайшей и дальнейшей точками ясного зрения) и объём (разница в показателях рефракции глаз (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения). С возрастом, волокна хрусталика уплотняются, и эластичность уменьшается, вследствие чего способность к аккомодации снижается.
Поле зрения – пространство, воспринимаемое глазом при неподвижном взгляде. Это пространство и по горизонтали, и по вертикали!
Цветоощущение — способность человека различать цвет видимых объектов (дневное видение). За эту функцию отвечают колбочки, расположенные в сетчатке.
Светоощущение — это способность зрительного анализатора воспринимать свет и различать степени его яркости (ночное видение). Это функция, за которую отвечают палочки, расположенные в сетчатке.
Светоадаптация – это способность глаза проявлять световую чувствительность при различной освещённости. Принято различать:
· световую адаптацию, которая протекает в течение первых секунд, затем замедляется и заканчивается к концу 1-й минуты, но может увеличиваться до 3 — 5 минут в зависимости от яркости светового потока, после чего светочувствительность глаза уже не увеличивается;
темновую адаптацию — изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным.
Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.
Острота зрения – это способность глаза распознавать минимальные по размеру объекты на расстоянии более 5 метров. Она, в первую очередь, зависит от правильного соотношения оптической силы глаза к его длине.
Дефекты зрения.
Миопия или близорукость — дефект зрения, при котором изображение формируется не на сетчатке, а перед ней. Коррекция миопии осуществляется рассеивающими (отрицательными) линзами.
Гиперметропия или дальнозоркость — дефект зрения, при котором изображение формируется за сетчаткой. Коррекция гиперметропии осуществляется собирающими (положительными) линзами.
Астигматизм — дефект зрения, возникающий вследствие неправильной (не сферичной) формы роговицы (реже — хрусталика). Коррекция осуществляется цилиндрическими очковыми линзами.
Пресбиопия — возрастное ослабление аккомодации глаза.
Коррекция, как правило, осуществляется офисными или прогрессивными линзами (самый удобный и современный способ). Как уже говорили выше, с возрастом волокна хрусталика уплотняются, а эластичность уменьшается, вследствие чего снижается способность к аккомодации.
P.S.
Материалы взяты из личной библиотеки.
Ставьте лайки и ждите новых статей про оптику.
Источник