Периферическое звено зрительного анализатора роговица

Периферическим звеном зрительного анализатора яв­ляются светочувствительные элементы — палочки и кол­бочки. Центральным звеном, ядром этого анализатора слу­жит зрительная кора на медиальной поверхности затылоч­ной доли полушарий большого мозга.

Свет на пути к светочувствительной сетчатке проходит через все прозрачные среды глаза. Зрачок, играющий роль диафрагмы, под действием ее мышц то суживается, то рас­ширяется, пропуская внутрь глаза меньший или больший пучок света. Светопреломляющие среды (роговица, водя­нистая влага передней и задней камер, хрусталик и стек­ловидное тело) направляют пучок света на самое чувстви­тельное место сетчатки — желтое пятно с его центральной ямкой. Глазодвигательные мышцы поворачивают глаза в сторону рассматриваемого объекта.

Попавший в глаз свет проникает в самые глубокие слои клетчатки, где раздражает палочки и колбочки. Преобразование энер­гии света в нервные импульсы происходит в результате химических процессов в палочках и колбочках. Под дей­ствием света в наружных члениках светочувствительных кле­ток происходят химические реакции, при которых зритель­ные пигменты — родопсин и йодопсин распадаются. Эти вещества действуют на палочки и колбочки, вызывая в них возбуждение. После прекраще­ния действия света происходит восстановление родопсина и йодопсина.

Палочкине способны раз­личать цвета, они используются преимущественно в суме­речном, ночном зрении для распознавания предметов по их форме и освещенности. Колбочкивыполняют свои функции в дневное время и для цветного зрения. В соответствии с особенностями строения и химического состава одни колбочки воспринимают си­ний цвет, другие — зеленый, третьи — красный, имею­щие различную длину световой волны.

Возникший в палочках и колбочках нервный импульс передается расположенным в толще сетчатки биполярным клеткам, а затем ганглиозным нейроцитам, которые явля­ются элементами проводящего пути зрительного анализа­тора. Аксоны ганглиозных клеток, собираясь в области сле­пого пятна, формируют зрительный нерв, который на­правляется в полость черепа. На нижней поверхности моз­га правый и левый зрительные нервы образуют частичный перекрест — хиазму. После хиазмы на другую сторону пе­реходят не все нервные волокна зрительного нерва, а только те, которые идут от медиальной части сетчатки. Таким образом, за зрительным перекрестом в составе зрительного тракта идут нервные волокна от латеральной части сетчатки «своего» глаза и медиальной части сетчатки другого глаза. Далее нервные волокна идут к подкорковым зрительным центрам — латеральному ко­ленчатому телу и верхним холмикам пластинки четверо­холмия среднего мозга. В этих центрах от волокон ганглиоз­ных клеток сетчатки импульс передается следующим ней­ронам, чьи отростки направляются в корковый центр зре­ния — кору затылочной доли мозга, где происходит выс­ший анализ зрительных восприятий.

Часть волокон зрительного нерва заканчивается на ядрах глазодвигательного нерва, волокна которого иннервируют сфинктер зрачка, ресничную мышцу и прямую мышцу глаза. Таким образом, в ответ на попадание света в глаз — зрачок суживается, а глаз поворачивается в сторону пучка света.

Частичный перекрест зрительных проводящих путей обеспечивает бинокулярность зрения.

Источник

Периферическим отделом зрительного анализатора является глаз, состоящий из глазного яблока и окружающих его вспомогательных органов (мышц глазных яблок, век, слезного аппарата). Глаз расположен в глазнице черепа.

В процессе эмбрионального развития глаза образуются как выпячивания боковых стенок промежуточного мозга. Такие выпячивания образуют глазные бокалы, сообщающиеся с мозгом с помощью глазного стебелька (см. рис. 4.6, б). Последний преобразуется в зрительный нерв, а глазной бокал — во внутреннюю оболочку глазного яблока, т.е. сетчатку. Таким образом, сетчатка имеет нервное происхождение и, как и все нейроны, развивается из наружного зародышевого листка — эктодермы. Остальные оболочки глазного яблока (сосудистая, роговица, склера) — соединительнотканные и развиваются из среднего зародышевого листка — мезодермы.

Глазное яблоко (рис. 13.1) расположено в глазнице черепа и имеет три оболочки, окружающие ядро глаза. [1]

Глазное яблоко диаметр зрачка может изменяться, и на сетчатку глаза попадает меньшее или большее количество света

Рис. 13.1. Глазное яблоко диаметр зрачка может изменяться, и на сетчатку глаза попадает меньшее или большее количество света. Мышечная ткань радужки состоит из гладкомышечных волокон, которые сокращается непроизвольно, т.е. диаметр зрачка регулируется автономной НС, причем парасимпатические влияния уменьшают его просвет, а симпатические — увеличивают.

Ресничное тело, лежащее между радужкой и собственно сосудистой оболочкой, кроме сосудов включает в себя две группы гладкомышечных волокон, сокращение которых увеличивает или уменьшает кривизну хрусталика. Мышцы прикрепляется к хрусталику по его периметру при помощи специальных связок. Управляют сокращениями ресничной мышцы в основном парасимпатические волокна. Немышечная часть ресничного тела выделяет жидкость — влагу камер (см. ниже).

3. Самая внутренняя оболочка — сетчатка. В ней расположены фоторецепторы — палочки и колбочки (см. параграф 13.2).

Внутреннее ядро глаза состоит из светопроводящих стекловидного тела и хрусталика, а также водянистой влаги, наполняющей глазные камеры и служащей для питания безсосудистых образований глаза.

Хрусталик — двояковыпуклое прозрачное тело, расположенное внутри глазного яблока позади радужки и способное менять свою кривизну. Хрусталик удерживается в своем положении специальными связками, идущими к нему от ресничной мышцы. Основная функция хрусталика — преломление световых лучей (рефракция), которое осуществляется таким образом, чтобы изображение фокусировалось точно на сетчатку. При изменении кривизны хрусталика меняется его преломляющая способность и достигается аккомодация — приспособление к одинаково четкому видению предметов, находящихся на разных расстояниях (наводка на резкость). При рассматривании близкого предмета хрусталик становится более выпуклым, а удаленных предметов — более плоским.

Читайте также:  Многослойный плоский эпителий роговицы

Известны три основные аномалии преломления лучей в глазу — близорукость (миопия), дальнозоркость (гиперметропия) и старческая дальнозоркость (пресбиопия). При всех этих аномалиях преломляющая сила и длина глазного яблока не согласуются между собой, в отличие от глаза с нормальным зрением (рис. 13.2).

Близорукость — аномалия рефракции глаза, при которой фокус оптической системы глаза находится перед сетчаткой, в стекловидном теле. Следовательно, при близорукости продольная ось глаза слишком длинная. У близоруких людей самая дальняя точка ясного видения находится ближе, чем в норме. Чтобы хорошо видеть вдали, таким людям нужны очки с вогнутыми линзами. Противоположностью близорукости является дальнозоркость. В этом случае продольная ось глаза укорочена. В результате фокус изображения оказывается за сетчаткой, и ближайшая точка ясного видения находится дальше, чем у здоровых людей. Для коррекции дальнозоркости надо носить очки с выпуклыми линзами. При старческой дальнозоркости длина глазного яблока не меняется. Дефект зрения возникает за счет того, что с возрастом хрусталик становится менее эластичным, и при ослаблении натяжения связок хрусталика его выпуклость или не меняется, или увеличивается лишь незначительно.

Аномалии рефракции глаза

Рис. 13.2. Аномалии рефракции глаза

Еще одна патология, связанная с нарушением рефракции, — астигматизм. Он связан с различиями кривизны роговицы в вертикальной и горизонтальной плоскостях. Это приводит к зависимости преломляющей силы роговицы от угла падения лучей. Небольшой астигматизм является физиологическим, т.е. он характерен и для нормального глаза. При выраженном астигматизме коррекция зрения осуществляется при помощи специальных линз.

Хрусталик глаза состоит из очень необычных клеток (хрусталиковых волокон), потерявших ядра и органоиды и содержащих большое количество белка кристаллина. Хрусталик не содержит сосудов и нервных волокон. Его рост прекращается в возрасте трех лет. В дальнейшем происходит постепенная потеря хрусталиком воды, в результате чего его объем уменьшается.

У пожилых людей содержание воды в хрусталике может снизиться до такой степени, что он становится непрозрачным — и тогда развивается слепота. Такое заболевание называется катарактой.

Стекловидное тело — прозрачное студенистое содержимое глазного яблока, расположенное между хрусталиком и сетчаткой. Стекловидное тело также лишено кровеносных сосудов и представляет собой аморфное межклеточное вещество желеобразной консистенции.

Передняя камера глазного яблока — пространство между роговицей и радужкой. Задняя камера глазного яблока — пространство между радужкой и хрусталиком. Обе камеры заполнены водянистой влагой и сообщаются через зрачок. Давление внутри глазного яблока зависит от количества влаги. Если ее отток затруднен, внутриглазное давление повышается, и развивается заболевание глаукома.

Источник

У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

Строение и отделы

Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

  • Периферический отдел – здесь расположены рецепторы сетчатки глаза.
  • Проводниковая часть – это зрительный нерв.
  • Центральный отдел – центр зрительного анализатора локализован в затылочной части головы человека.

Зрительный анализатор
Работу зрительного анализатора по своей сути можно сравнить с системой телевидения: антенной, проводами и телевизором

Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

Схема строения непосредственного глазного яблока включает 10 элементов:

  • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
  • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
  • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
  • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
  • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
  • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
  • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
  • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
  • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
  • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.
Читайте также:  Сроки заживления эрозии роговицы

Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.

Строение глаза
Вот так схематично выглядит строение глазного яблока в разрезе

Вспомогательные элементы глазного яблока

Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

  • Пара, обеспечивающая движение глаза вверх и вниз.
  • Пара, отвечающая за движение влево и вправо.
  • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

Также к вспомогательным элементам зрительного аппарата относятся:

  • веки и ресницы;
  • конъюнктива;
  • слезный аппарат.

Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.

Строение глаза
Зрительная система человека устроена сложно, но вполне логично, каждый элемент несет определенную функцию и тесно связан с другими

Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

Как происходит восприятие и передача зрительной информации

Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.

Читайте также:  Лечение роговицы у пекинесов

Глаз
Зрение человека – это намного сложнее и больше, чем просто глаза. Это сложный многоступенчатый процесс, осуществляемый, благодаря слаженной работе группы различных органов и элементов

Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

  • восприятие сложных зрительных объектов, например, печатного текста в книге;
  • оценка размеров, формы, удаленности предметов;
  • формирование восприятия перспективы;
  • различие между плоскими и объемными предметами;
  • объединение всей полученной информации в целостную картинку.

Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

Как изменяется зрительный анализатор с возрастом

Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.

Грудной ребенок
Новорожденные дети воспринимают мир в перевернутом виде и в черно-белом цвете, так как формирование зрительного анализатора у них еще полностью не завершено

К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

Что еще интересно знать

Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.

Двоение
Сбой на любом этапе передачи и обработки информации в зрительном анализаторе приводит к различным нарушениям зрения

Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

Источник