Нейроны сетчатки это палочки и колбочки

Фоторецепторы и формирование оптического изображения в сетчатке

Нейроны, палочки и колбочки сетчатки глаза — система, совокупность структурно-функциональных единиц нервной системы (нейронов) сетчатки глаза, участвующих в хаотической фиксации аналоговых сигналов RGB точек объекта, создании биоэлектрических импульсов этих световых и цветовых характеристик с попоследующей их передачей в систему головного мозга для обработки и формирования на базе них изображений — образов. Это происходит в цепочке организованной природой последовательности прохождения, формирования информации на базе иерархического синтеза в системе случайности и закономерности поступления её, формирования и запоминания.[1]

Основой зрительного восприятия изображения является фотобиологический парадокс зрения, заключающийся в принципе передачи зрительной информации светом и в то же время содержащий фактор риска. Необходимым условием нормального фунционирования зрительного процесаа является наличие света и кислорода, что является достаточным фактором ненормальных (деструктивных) фотохимических рекций механизма свободно-радикального окисления. В итоге, при слишком интенсивном дневном освещении работает система защиты от опасности фотоповреждения, где главную роль выполняет хрусталик (его диафрагмирование). [2]

РодопсинПравить

Рис. 1. Спектры поглощения Родопсина

Родопси́н (от др.-греч. ρόδον — роза и др.-греч. όπσις — зрение; иногда в качестве синонима используют устаревшее название — зри́тельный пу́рпур) — основной зрительный пигмент. Содержится в палочках сетчатки глаза морских безпозвоночных, рыб, почти всех наземных позвоночных и человека. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться по структуре и молекулярной массе.

На Рис.1, (кривая 1) показан спектр поглощения родопсина, состоящий из трёх полос:

  • α — 500 нм
  • β — 350 нм
  • γ — 280 нм

Механизм работы элементов зрительной системыПравить

Порядок прохождения аналогового сигнала лучей света объекта

В отличие от традиционных способов получения оптических изображений и изображений при фотографировании в биологической системе глаза аналоговые сигналы фиксируются в фотодиодах — рецепторах палочках и колбочках, вначале пройдя систему ганглиозных и биполярных клеток (кровеносных и нервных не светочувствительных). После чего световые лучи — фотоны попадвют хаотично (случайно) на боковые светочувствителные элементы колбочки (сетчатка) (фоторецепторы RGB), палочки (сетчатка) (реагируют на чёрно-белый цвет) сетчатки глаза. При этом случайности процессов доказывается строго на базе математического анализа спектров света и функций корреляции. Т.е именно благодаря этому весь процесс формирования изображений — образов объекта в коре головного мозга находятся под контролем. На микросъёмке разреза сетчатки глаза видно направление, прохождение лучей света. Они не сразу попадают в зону контакта с поверхностями колбочек и палочек. Лучи ложаться на всю объёмную поверхность каждого сенсора, чувствительного к определённой длине волны его составляющих RGB. Неподвижные наблюдаемые объекти фиксируются в виде оптического изображения со всеми стационарными точками излучения и получаемое изображение — образ фомируется и запоминается чётко. В случае движушихся относительно друг друга наблюдателя или объекта фиксация меняющихся оптических изображений возможна при определенной скорости, обеспечивающей обработку и передачу аналоговых сигналов изображения и их фиксации в памяти. В отличие от работы фотовидеоаппаратуры, где процессы фиксаци аналоговых сигналов в пикселах фотосенсоров или в фотоплёке идут со скоростями работы электронов (практически со скоростью света), то фоторецепторы сетчатки (палочки, колбочки) производят обработку аналоговых сигналов (фотонов) для перевода в биологический сигнал за счёт химических реакций. Откуда, скорость проходения аналогового сигнала предметной точки значительно ниже. Глаз может зафиксировать и передать порядка до 30 кадров в секунду. Система видеоаппаратуры построена на эом эффекте. В кинопрокате аппаратура работает со скоростью 24 кадра в секунду, что обеспечмвает чёткое восприятие движущихся объектов. Контактирующие нервные окончания с фоторепторами посредством нервных стволов передают его в зрительные отделы коры головного мозга. Попавшие аналоговые сигналы в любом виде (отдельные, комплексные и т.д.) запоминаются, формируются в виде образов (по типу изображений), которые становятся как бы путеводителем ответных реакций в деятельности организма. Например, в экстремальных условиях деятельности человека, при преодолении препятствий, при тренировках, соревнованиях в спортивной деятельности зрительный анализатор является главнейшим рецептором.

Особенности восприятия света сетчаткой глазаПравить

Рис.1

Глаз как биологическая оптическая система с фоторецептором сетчаткой обладает уникальной способностью адаптироваться к восприятию света. Он может различать мелкие детали изображения (например, риски, точки)с большим диапазоном контрастности. Это в местах, где имеется резкий переход яркости освещенных деталей предмета (при солнечном освещении). Глаз выделяет такие мелкие детали предмета с диапазоном контрастности с отношением порядка 800:1. В условиях ночного освещения или слабового освещения глаз адаптируется и к этим условиям и способен различать детали предмета с диапазоном контрастности до 1200:1 (темновое зрение). В условиях с ярким освещением «темновое зрение» не работает.[3]. Это связано со строением глаза, содержащего около 120-150 милионнов палочек и более 6-7 миллионнов колбочек. Палочки реагируют на яркость (максимум чувствительности приходится на величину просвета между рискаим в 498 нм). Три вида колбочек реагируют на цвета RGB составляющих света (красный цвет,зелёный цвет,синий цвет). Рецепторы глаза реагируют на поглощенную энергию света в 1-2 кванта. Если учесть адаптацию глаза к темноте (увеличение диаметра зрачка от 1,5 до 8 мм, происходящее в течение секунд, перестройку восприятия от цветового дневного зрения к более чувствительному ночному (от колбочек — к палочкам) и снижение уровня выцветания светочувствительных пигментов происходит в течение 5-20 минут). В настоящее время такой светочувствительностью и таким воспринимаемым диапазоном яркости не обладает ни один светочувствительнай промышленный фотоматериал.[4].

Читайте также:  Где лучше делать операцию на сетчатке

См. также Править

  • Глаз
  • Сетчатка
  • Офтальмология

СсылкиПравить

  1. ↑ https://www.sfe.ru/v_book_anat6.php
  2. ↑ https://library.biophys.msu.ru/PDF/3353.pdf
  3. ↑ https://aeclub.net/forums/index.php?showtopic=557
  4. ↑ https://aeclub.net/forums/index.php?showtopic=557

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA
, если не указано иное.

Источник

Долгожданный отдых на берегу моря. Радуют взор синие волны, зеленые пальмы, желтый песок, красные экзотические птички летают вокруг. Наслаждаясь яркими цветовыми гаммами, даже не задумываешься, что все это великолепие нам передают маленькие фоторецепторы – колбочки и палочки сетчатки глаза.

Принцип действия фоторецепторов

Человек воспринимает изображение окружающей среды посредством оптической системы организма – глаза. Единица света, фотон, проходя через хрусталик, фокусируется на сетчатке. И тут в работу вступают светочувствительные клетки. Периферические отростки этих клеток и есть палочки и колбочки. Основная задача – перевод раздражения от света в нервный импульс, который передается в верхние бугры четверохолмия головного мозга для последующей обработки.

Колбочки и палочки сетчатки глаза

Наименование фоторецепторы получили за свою форму. Размеры очень малы – палочки длиной всего шесть сотых миллиметра, диаметром в две сотых, колбочки – около пятидесяти микрометров, длина варьируется от одного до четырех. Успешно выполнять свои функции при таких небольших размерах, получается за счет количества. Палочек находится в сетчатке около ста двадцати миллионов, колбочек – в районе семи.

Строение

Палочки

Палочка складывается из четырех базовых элементов:

  • Наружный – в нем находятся мембранные диски в большом количестве, которые заключают в себе молекулы со зрительным пигментом родопсином, отвечающим за передачу световых ощущений;
  • Связующий – ресничка, соединяющая наружные и внутренние элементы конструкции;
  • Внутренний – в нем находится ядро, митохондрии – поставщики энергии, полирибосомы – участники синтеза белков для наружных элементов;
  • Нервные окончания – интернейроны.

Сигналы с сетчатки собираются не одной палочкой, а объединенной группой, что увеличивает чувствительность зрения на периферии.

Колбочки

Также с четырехкомпонентным строением:

  1. Наружный – хранит мембранные полудиски с молекулами пигмента йодопсина, отвечающим за цветопередачу;
  2. Связующий – перетяжка, компоненты – цитоплазма и пара ресничек;
  3. Внутренний – ядро, митохондрии, полирибосомы;
  4. Синаптический – место связи нейрона со специальными ганглиозными клетками, обеспечивающими содружество палочек и колбочек.

Строение глаза

Функции

Палочки

Обладают высокой чувствительностью к фотонам. Основное действие – ночное зрение. Родопсин, содержащийся в мембранах, обеспечивает восприятие в черно-белых тонах. На свету идет разложение пигмента и смещение в область синего спектра, что, при совместном действии с колбочками, обеспечивает цветовое зрение. Продукты разложения раздражают зрительный нерв, что обеспечивает передачу импульса. Параллельно с распадом, постоянно происходит процедура регенерации. Восстанавливается родопсин около получаса, с этим связана человеческая особенность привыкать к темноте через определенный промежуток времени.

Колбочки

Чувствительность к свету значительно ниже, почти в сто раз, поэтому в темноте они не работают. Бывают трех видов, способных различать различные цвета:

  • Коротковолновые – отвечают за синий;
  • Средневолновые – несут ответственность за зеленый;
  • Длинноволновые – красный.

Количество разное, меньше всего синих, всего около 2%, больше – красных, в районе 64%. Интересный факт – у каждого человека процентное соотношение индивидуально, тем не менее, цветовое восприятие не отличается.

Каждому виду, по трехкомпонентной теории, соответствует своя разновидность йодопсина. Эритролаб отвечает за длинноволновой спектр восприятия, хлоролаб – за средневолновой. В теории считается, что коротковолновому спектру должен соответствовать цианолаб, однако этот компонент до сих пор не был обнаружен. На основании имеющихся данных, имеет много сторонников иная, двухкомпонентная теория. В соответствии с ней, колбочки содержат только два компонента, а синий спектр остается в ведении палочек – разложившемся на свету родопсине. Данная теория имеет некоторые подтверждения, в частности – больные с нарушением видения синих цветов, страдают параллельно и от проблем с сумеречным зрением.

Механизм действия йодопсина похож на родопсин – под воздействием световых волн происходит процесс распада, что вызывает возбуждение нервных окончаний. Более низкая чувствительность объясняет преимущественно дневное цветовое восприятие – ночного освещения недостаточно для реакции этого пигмента. Зато скорость регенерации значительно выше, примерно в пятьсот раз.

Палочки и колбочки сетчатки глаза работают в содружестве, передавая возбуждение нейронам. Они располагаются на пигментном слое клеток, содержащих фуксин. Этот элемент отвечает за поглощение световых волн и обеспечение четкости предметного восприятия.

Сетчатка глаза

Нарушение функционирования палочек и колбочек сетчатки глаза

Не всегда наши органы работают как часы, иногда возникают различные нарушения. Случается такое и в службе фоторецепции. Тревогу следует поднимать при появлении следующих симптомов:

  1. Падение остроты;
  2. Тусклое восприятие цветов;
  3. Появление пленки перед глазами;
  4. Сужение полей зрения;
  5. Мелькание, сполохи, вспышки перед взором;
  6. Проблемы с распознаванием деталей в сумерках.
Читайте также:  Патогенетические факторы окклюзии артерий сетчатки

Заболевания, связанные с поражением палочек и колбочек немногочисленны, но серьезны. Часть из них обусловлена генетически, часть приобретается в течение жизни.

Гемералопия

Широкую известность имеет под названием “куриная слепота”. Резкое нарушение сумеречного зрения, связано с патологией в работе палочек – нарушением синтеза родопсина. Выделяют три разновидности:

  • Врожденная – наследственно обусловлена, проявляется в раннем детстве, неизлечима;
  • Эссенциальная – развивается на фоне резкой недостачи витаминов А, РР и В, толчком могут послужить заболевания эндокринной системы, ЖКТ, печени, диеты, инфекции; лечится диетотерапией и приемом витаминных капель;
  • Симптоматическая – проявляется как сопутствующее явление при других глазных заболеваниях, лечится в комплексе с основной причиной.

Гемералопия

Макулодистрофия

Патология центральной части сетчатки, где расположены фотопигменты. Связано с сосудистыми патологиями. При влажной форме позади сетчатки возникают новые сосуды, вызывающие кровоизлияния и повреждение светочувствительных клеток. При сухой форме истончается макула (центр сетчатки), при этом процессе погибают клетки пигментов. Эффективных форм лечения нет.

Маклудистрофия

Пигментная абиотрофия сетчатки

Генетически обусловленное поражение палочек. На поздних стадиях страдают и колбочки. Заболевание протекает длительно, в течение нескольких десятков лет. Начинается в детском возрасте – прогрессирует разрушение наружного слоя сетчатки. Постепенно процесс переходит на центральные зоны. Лечение отсутствует, применяют витаминотерапию для торможения патологии.

Пигментная абиотрофия сетчатки

Дальтонизм

Наследственная патология. В большинстве случаев страдают мужчины, женщины – носительницы. Передается с х-хромосомой матери, поэтому у девочки замещается здоровыми генами х-хромосомы отца. Возможен обратный вариант, но в любом случае ребенок становится носителем дефектной хромосомы. Только при встрече носителя женского пола и больного – мужского, возможно проявление дальтонизма у дочерей, вероятность крайне низка. Проявляется в отсутствии способности различать цвета. Выделяют четыре вида:

  1. Протанопия – не различаются красные цвета;
  2. Тританопия – сине-фиолетовый спектр;
  3. Дейтеранопия – отсутствие восприятия зеленого;
  4. Ахроматопсия – полностью отсутствует способность воспринимать цвет.

Излечение невозможно.

Виды дальтонизма

Хориоретинит

Воспаление сосудистой оболочки. Страдает сетчатка. Причины разнообразны. Лечение проводится в соответствии с возбудителем – антибактериальная, противовоспалительная, дезинтоксикационная, иммунотерапия.

Хориоретинит

Отслойка сетчатки

Процесс отторжения эпителия сетчатки от фоторецепторного слоя вследствие скопления жидкости между ними. Может быть вызвано нарушениями трофики, работы эндокринной системы организма, травмами, воспалениями, кровоизлияниями, анемиями. Лечение хирургическое.

Отслойка сетчатки

Профилактика

Генетически обусловленные заболевания предотвратить невозможно, но в некоторых случаях возможно отсрочить последствия. Приобретенных патологий вполне реально избежать при некоторых мерах профилактики.

  • Сбалансированное питание;
  • Соблюдение зрительного режима – гимнастика, тренировки, своевременный отдых после нагрузки на орган зрения;
  • Адекватный профессиональный подбор корригирующих очков при миопии, пресбиопии, астигматизме, гиперметропии. И использование в соответствии с рекомендациями офтальмолога;
  • Умеренная физическая общеукрепляющая нагрузка;
  • Соблюдение светового режима;
  • Защита глаз от ультрафиолета с помощью солнцезащитных очков с качественными фильтрами.

Существуют очень маленькие части нашего организма, выполняющие огромную роль. Безустанно трудятся фоторецепторы – колбочки и палочки сетчатки глаза – для того, чтобы наша жизнь расцветала красками.

Источник

Сечение слоя сетчатки глаза

Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро;
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент.

Ко́лбочки (англ. cone) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.

Колбочки чувствительны к свету благодаря наличию в них специфического пигмента — йодопсина. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).

В литературе представлены различные оценки, хотя и близкие числа колбочек в сетчатке человеческого глаза у взрослого человека со 100 % зрением. Так в[1] указывается число от шести до семи миллионов колбочек, большинство из которых содержится в жёлтом пятне.
Обычно указываемое количество в шесть миллионов колбочек в человеческом глазу было найдено Остербергом в 1935 году[2]. Учебник Ойстера (1999)[3] цитирует работу Curcio et al. (1990), с числами около 4,5 миллионов колбочек и 90 миллионов палочек в сетчатке человека[4].

Размеры колбочек: длина около 50 мкм, диаметр — от 1 до 4 мкм.

Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.

Строение фоторецепторов[править | править код]

Колбочки и палочки сходны по строению и состоят из четырех участков.

В строении колбочки принято различать (см. рисунок):

  • наружный сегмент (содержит мембранные полудиски),
  • связующий отдел (перетяжка),
  • внутренний сегмент (содержит митохондрии),
  • синаптическую область.

Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё. Они представляют собой складки плазматической мембраны, покрытые светочувствительным пигментом. Обращённая к свету, наружная часть столбика из полудисков, постоянно обновляется — за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора, происходит примерно за 10 дней. В колбочках мембранных полудисков меньше, чем дисков в палочке, и их количество порядка нескольких сотен. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Читайте также:  Зрительный нерв и сетчатка

Внутренний сегмент это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.

В синаптической области клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.

Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении[5].

Цветное зрение[править | править код]

Нормализованные графики спектральной зависимости чувствительности к свету у человеческих клеток-колбочек различных видов — коротковолновых, средневолновых и длинноволновых (синий, зелёный и красный графики) и клеток-палочек (чёрный график). NB: ось длин волны на данном графике линейная.

Те же графики, но без нормализации светочувствительности

По чувствительности к свету с различными длинами волн различают три вида колбочек. Колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение.

НазваниемаксимумНазвание цвета
S443 нмсиний
M544 нмзелёный
L570 нмкрасный

Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[6]

Пигмент, чувствительный к фиолетово-синей области спектра, названный цианолаб, у человека кодируется геном OPN1SW[7][8][9].

В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Пространственное разрешение глаза человека различается для разных цветов: На белом фоне ориентацию жёлтых линий определить сложно, поскольку жёлтый отличается от белого синей (коротковолновой) компонентой

Колбочки трёх видов распределены в сетчатке неравномерно[10]. Преобладают длинно- и средневолновые, коротковолновых колбочек гораздо меньше и они (как и палочки) отсутствуют в центральной ямке. Такая асимметрия объясняется цветовой аберрацией — изображение хорошо сфокусировано на сетчатке только в длинноволновой части спектра, то есть если количество «синих» колбочек и увеличить, чётче изображение не станет[11].

Примечания[править | править код]

  1. ↑ The Rods and Cones of the Human Eye.
  2. Osterberg, G. Topography of the layer of rods and cones in the human retina (англ.) // Acta Ophthalmologica (англ.)русск. : journal. — Wiley-Liss, 1935. — Vol. Suppl. 13, no. 6. — P. 1—102.
  3. Oyster, C. W. The human eye: structure and function (неопр.). — Sinauer Associates (англ.)русск., 1999.
  4. Curcio, CA.; Sloan, KR.; Kalina, RE.; Hendrickson, AE. Human photoreceptor topography (англ.) // J Comp Neurol (англ.)русск. : journal. — 1990. — February (vol. 292, no. 4). — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.

  5. Н. Грин, У.Стаут, Д.Тейлор. Биология: в 3-х т. — Пер.с англ./ под.ред. Р.Сопера. — М.: Мир, 1993. — Т. 2. — С. 280—281.

  6. Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
  7. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments (англ.) // Science : journal. — 1986. — April (vol. 232, no. 4747). — P. 193—202. — PMID 2937147.
  8. Fitzgibbon J., Appukuttan B., Gayther S., Wells D., Delhanty J., Hunt D. M. Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32 (англ.) // Hum Genet : journal. — 1994. — February (vol. 93, no. 1). — P. 79—80. — PMID 8270261.
  9. ↑ Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan).
  10. ↑ Rods & Cones см. раздел The Receptor Mosaic.
  11. ↑ Brian A. Wandell, Foundations of Vision, Chapter 3: The Photoreceptor Mosaic (недоступная ссылка). Архивировано 5 марта 2016 года.

Источник