Конфокальная лазерная сканирующая микроскопия роговицы

Конфокальная микроскопия – это один из методов оптической микроскопии, который обладает существенным контрастом по сравнению с обычными классическими микроскопами. Отличительной особенностью данного метода является использование диафрагмы, способной отсекать поток фонового рассеянного света.

В конфокальном микроскопе в каждый момент времени происходит регистрация изображения одной токи объекта. Полноценное изображение получается за счет сканирования передвижения образца или перестройки оптической системы. После объективной линзы расположена диафрагма небольшого размера так, чтобы свет, испускаемый исследуемой точкой, проходил через нее и регистрировался, а свет, исходящий от других точек, задерживался диафрагмой.

Описанный метод исследования позволяет изучать внутреннюю структуру различных клеток. С его помощью можно идентифицировать отдельные молекулы и структуры клетки, микроорганизмы, а также динамические процессы, протекающие в клетках.

Описание метода конфокальной микроскопии

Благодаря конфокальной флуоресцентной микроскопии появилась возможность получать трехмерное субмикронное расширение объектов, а также значительно расширилась возможность проведения неразрушающего анализа прозрачных образцов. Благодаря использованию в указанных микроскопах в качестве источников света лазеров, достигается повышение их разрешающей способности.

Конфокальная лазерная сканирующая микроскопия роговицы

По сравнению с ксеновыми или ртутными лампами лазеры отличаются существенными преимуществами, так как обладают способностью монохроматичности, а также высокой параллельности испускаемого пучка света. Такие свойства лазерного излучения обеспечивают оптической системе более эффективную работу, а также снижают количество бликов и увеличивают точность фокусировки пучка света.

На исследуемом образце лазер освещает не все поле зрения, а фокусируется в определенной точке. Конфокальная диафрагма позволяет избавиться от внефокусной флуоресценции, при этом изменяя диаметр диафрагмы, можно точно определять толщину оптического слоя возле фокуса лазерного луча. Благодаря описанному свойству конфокальная микроскопия позволяет получать улучшенное разрешение вдоль оси Z.

Специальные программы, которыми оснащены конфокальные микроскопы, позволяют из серии оптических срезов создавать объемные изображения объектов, а также рассматривать их под разными углами зрения.

Применение мультиспектрального лазерного сканирующего конфокального микроскопа дает возможность изучать колоколизацию в клетке различных веществ. Мультиспектральный режим позволяет проводить на конфокальном микроскопе исследования по методу FISH.

Примеры исследований, проводимых с помощью конфокального микроскопа

Конфокальная микроскопия помогает изучать способность различных веществ накапливаться в ядре, цитоплазме или в других клеточных структурах. Эти способности зачастую применяются в процессе проведения исследований механизмов действия канцерогенов, противоопухолевых соединений, лекарственных препаратов, а также позволяют рассчитывать их эффективные концентрации.

Летальное изучение интенсивности, а также формы спектров собственной флуоресценции дает возможность распознавать воспаленные и нормальные клетки. Этот метод используется на ранних сроках диагностики рака шейки матки.

Правильно подобранная комбинация различных фильтров, предназначенных для нескольких типов собственной флуоресценции, может получаться без трудоемкого исследования множества срезов. Таким образом, можно быстро и точно обнаруживать злокачественные тканевые структуры и отличать их от нормальных.

Методы конфокальной микроскопии достаточно широко используются в гидробиологии и эмбриологии, в ботанике и зоологии в процессе изучения структуры гамет, а также развития и формирования организмов.

Конфокальные лазерные микроскопы в современном мире нашли широкое применение в области биологии, биофизики, медицины, клеточной, а также молекулярной биологии. Конфокальная микроскопия – это уникальная бесконтактная методика, которая сегодня используется для изучения роговицы глаза. Она позволяет максимально точно оценить имеющуюся степень клеточных изменений и внеклеточных структур, а также сделать выводы о возможном повреждении роговицы в целом.

Лазерные конфокальные микроскопы обладают высоким разрешением, поэтому позволяют исследовать структуру флуоресцентно меченых клеток и даже отдельных генов. Применение всевозможных технологий специфической многоцветной флуоресцентной окраски для биологически активных молекул, а также надмолекулярных комплексов дает возможность изучать сложные механизмы функционирования не только отдельных клеток, но и целых систем. Данная технология широко используется в экспериментальной биологии, а также в медицине.

Оборудование — конфокальные микроскопы

Современные сверхточные конфокальные микроскопы, такие как Leica TCS SP8 позволяют получить максимально четкие и достоверные данные при проведении различных исследований. Широкий интерес к таким приборам возник в восьмидесятых годах прошлого столетия, из-за быстрого развития компьютерной техники и лазерных технологий.

Конфокальная лазерная сканирующая микроскопия роговицы

Конфокальная лазерная сканирующая микроскопия представляет собой разновидность оптической микроскопии. Ее особенностью является то, что лазерный луч фокусируется на определенную область по осям Х и У и формирует, таким образом, изображение. Отраженный свет демонстрируется на экране в виде растра. Размеры изображения напрямую зависят от разрешающей способности современной электроники, а также от размеров сканируемого растра.

Измерительные приборы, которые созданы с помощью современного метода конфокальной лазерной сканирующей микроскопии, в наше время получили широчайшее распространение в разных сферах. По сравнению с обычной световой микроскопией конфокальная микроскопия обладает следующими преимуществами:

  • улучшенная разрешающая способность;
  • высокая контрастность изображения;
  • возможность проводить мультиспектральные исследования с высокой степенью разделения сигналов;
  • возможность получения «оптических срезов» с трехмерной реконструкцией;
  • возможности использования способов цифровой обработки полученных изображений;

Из недостатков описанной аппаратуры можно выделить:

  • сложность настройки прибора;
  • отсутствие оптического изображения;
  • высокая стоимость приборов, также дороговизна их обслуживания.

В конфокальном микроскопе для управления всей системой используется специальный компьютер. Он позволяет сохранять изображения и детально изучать полученные данные. Для качественной обработки полученных изображений зачастую требуются достаточно большие вычислительные мощности, поэтому компьютер должен обладать довольно большой оперативной памятью. Для дальнейшего хранения информации требуется также и большая дисковая память. Для передачи изображений такой компьютер должен иметь USB-порт или CD/DVDRW. Также компьютер имеет возможность подключения к глобальной интернет или локальной сети.

Программное обеспечение, установленное в таких компьютерах, может быть базовым. Оно поставляется вместе с техникой и позволяет управлять всей системой и контролировать ее основные функции. Также для указанных компьютеров специально разрабатываются пакеты прикладных задач, которые заказываются дополнительно. Многие модели конфокальных микроскопов имеют специальный пульт управления, позволяющий настраивать их работу дистанционно.

Устанавливают описанные приборы в обычных лабораторных посещениях. Важнейшей процедурой в процессе эксплуатации конфокальных микроскопов является контроль за вибрациями. Для таких целей применяют специальное устройство, измеряющее уровень вибрации. Процедура контроля похожа на процедуру измерения аксиальной разрешающей способности ЛСКМ при помощи зеркала.

Читайте также:  Уколы для роговицы глаза

Конфокальная микроскопия стремительно развивается. Известные компании-производители представляют на рынке новейшие образцы конфокальных микроскопов, которые позволяют эффективно разделять лазерный луч возбуждения, а также люминесценцию. С помощью компьютера в таких приборах управляется светоделитель. Его спектральные свойства при необходимости могут достаточно быстро перестраиваться на несколько лазерных линий.

Конфокальные микроскопы в микробиологии

Конфокальный микроскоп также незаменим в биологии для детального исследования клетки. Сегодня на эту тему публикуется огромное количество различных научных статей. Чаще всего при помощи конфокальных микроскопов изучают структуру клеток, а также их органоидов. Также исследуется колокализация в клетке для того, чтобы понять есть ли причинно-следственная связь между веществами клетки.

В процессе изучения белков конфокальными микросокпами они предварительно маркируются антителами с разными флуорохромами. С помощью обычного классического микроскопа довольно трудно разобрать расположены ли они рядом либо же один под другим, а вот конфокальный микроскоп позволяет это сделать без особых проблем. В памяти компьютера записываются данные о серии оптических срезов и, таким образом, проводится объемная реконструкция объекта, атакже получается его трехмерное изображение.

Также с помощью конфокальных микроскопов исследуют динамическое процессы, протекающие в живых клетках, например, передвижение ионов кальция или других веществ сквозь клеточные мембраны. Используют конфокальные микроскопы и для изучения подвижности биоорганических молекул с помощью ионизации фотохимического разложения флуорохрома в зоне облучения, а также последующего его рассоединения с молекулами. Такие молекулы маркируются двумя флуорохромами, обладающими спектром испускания донора, который перекрывается спектром поглощения акцептора. Таким образом, энергия передается от донора к акцептору на небольших расстояниях и в результате резонанса между энергетическими уровнями. После этого акцептор в видимой области спектра излучает энергию, которая впоследствии регистрируется с помощью конфокального микроскопа.

Развитие конфокальной микроскопии продолжается. Компании-производители указанного оборудования ежегодно представляют на рынке все более современные, функциональные и усовершенствованные микроскопы, позволяющие ученым совершать новые полезные открытия в самых разных сферах. Совершенствуется и программное обеспечение, предназначенное для компьютеров, которыми оснащены конфокальные микроскопы. Оно позволяет воплощать в жизнь самые сложные задачи, которые дают возможность проводить исследования на молекулярном и клеточном уровне. Сегодня с уверенностью можно сказать, что за конфокальными микроскопами будущее, так как по своим функциональным характеристикам и техническим возможностям они существенно превзошли обычные микроскопы. Среди достаточно широкого ассортимента конфокальной оптической аппаратуры каждый пользователь сможет подобрать для себя именно торт микроскоп, который позволит ему активно развивать свои исследования.

Источник

Описание

Конфокальная лазерная сканирующая микроскопия роговицы

Конфокальная микроскопия — один из современных методов исследования; позволяет проводить прижизненный мониторинг состояния роговицы с визуализацией тканей на клеточном и микроструктурном уровне.

Данный метод в силу оригинальной конструкции микроскопа и его большой разрешающей способности позволяет визуализировать живые ткани роговицы, измерить толщину каждого из её слоён, а также оценить степень морфологических нарушений.

Охарактеризовать морфологические изменения роговицы, возникающие при различных воспалительных и дистрофических её заболеваниях, а также вследствие хирургических вмешательств и воздействия КЛ.

Данные морфологического исследования необходимы, чтобы оценить тяжесть патологического процесса, эффективность лечения и определить тактику ведения больного.

• Воспалительные заболевания роговицы (кератиты).
• Дистрофические заболевания роговицы (кератоконус, дистрофия Фукса и др.).
• Синдром «сухого глаза».
• Состояния после хирургических вмешательств на роговице(сквозной пересадки роговицы, кераторефракционных операций).
• Состояния, связанные с ношением КЛ.

Относительное противопоказание выраженное раздражение глаза на фоне острого воспалительного процесса.


Проведение данного исследования
возможно без применения анестетиков. На объектив линзы конфокального микроскопа помещают каплю иммерсионной жидкости. Это исключает непосредственный контакт линзы с роговицей и сводит к минимуму риск повреждения эпителия.

Исследование выполняют на конфокальном микроскопе ConfoScan 4 (Nider) с увеличением в 500 раз. Прибор позволяет осмотреть роговицу по всей её толщине.

Размер исследуемой зоны составляет 440×330 мкм, толщина слоя сканирования — 5 мкм. Линзу с каплей геля подводят к роговице до касания и устанавливают так. чтобы толщина слоя иммерсионной жидкости составляла 2 мм. Конструкция прибора позволяет исследовать роговицу в центральной зоне и её парацентральных участках (рис. 7-1; рис. 7-2.).

Конфокальная лазерная сканирующая микроскопия роговицы

Конфокальная лазерная сканирующая микроскопия роговицы

Передний эпителий состоит из 5-6 слоев клеток. Средняя толщина всего эпителия — приблизительно 50 мкм. По морфологической структуре выделяют следующие слои (изнутри кнаружи): банальный, шиловидных клеток и поверхностный.

• Самый внутренний (базальный) слой представлен маленькими плотными цилиндрическими клетками без видимого ядра. Границы базальных клеток чёткие, яркие (рис. 7-3).

Конфокальная лазерная сканирующая микроскопия роговицы

• Средний слой состоит из 2-3 пластов шиповидных (крылатых) клеток с глубокими инвагинациями, в которые встраиваются выросты соседних клеток. Микроскопически границы клеток довольно хорошо различимы, а ядра могут не определяться или быть нечёткими (рис. 7-4).

Конфокальная лазерная сканирующая микроскопия роговицы

• Поверхностный слой эпителия представлен одним или двумя пластами полигональных клеток с чёткими границами и гомогенной плотностью. Ядра обычно ярче, чем цитоплазма, в которой также можно различить околоядерное тёмное кольцо (рис. 7-5).

Конфокальная лазерная сканирующая микроскопия роговицы

Среди клеток поверхностного слоя различают тёмные и светлые. Повышенная отражательная способность эпителиальных клеток свидетельствует о снижении в них уровня метаболизма и начинающейся их десквамации.

Боуменова мембрана прозрачная структура, не отражающая свет, поэтому в норме при конфокальной микроскопии её визуализация невозможна.

Суббазальное нервное сплетение находится под боуменовой мембраной. В норме нервные волокна выглядят как параллельно идущие на тёмном фоне яркие полосы, контактирующие между собой. Рефлективность (отражательная способность) может быть неравномерной по протяжению волокна (рис. 7-6).

Конфокальная лазерная сканирующая микроскопия роговицы

Строма роговицы занимает от 80 до 90% толщины роговицы и состоит из клеточного и внеклеточного компонента. Основные клеточные элементы стромы— кератоциты; составляют примерно 5% объёма.

Типичная микроскопическая картина стромы включает несколько ярких неправильной овальной формы тел (ядер кератоцитов), которые лежат в толще прозрачного тёмно-серого или чёрного матрикса. В норме визуализация внеклеточных структур невозможна из-за их прозрачности. Строма может быть условно разделена на субслои: передний (расположен непосредственно под боуменовой мембраной и составляет 10% толщины стромы), переднесредний, средний и задний.

Средняя плотность кератоцитов выше в передней строме, постепенно их количество уменьшается по направлению к задним слоям. Плотность клеток передней стромы почти в два раза больше, чем клеток задней стромы (если плотность клеток передней стромы принять за 100%, то плотность клеток задней составит около 53,7%). В передней строме ядра кератоцитов имеют округлую бобовидную форму, а в задней овальную и более вытянутую (рис. 7-7.7-8).

Читайте также:  Ожог роговицы глаза код

Конфокальная лазерная сканирующая микроскопия роговицы

Конфокальная лазерная сканирующая микроскопия роговицы

Ядра кератоцитов могут различаться по яркости. Различная способность отражать свет зависит от их метаболического состояния. Более яркие клетки принято считать активированными кератоцитами («стрессовыми» клетками), деятельность которых направлена на поддержание внутреннего гомеостаза роговицы. В норме и поле зрения встречаются единичные активированные клетки (рис. 7-9).

Конфокальная лазерная сканирующая микроскопия роговицы

Нервные волокна в передней строме роговицы визуализируются в виде ярких гомогенных полос, нередко образующих бифуркации (рис. 7-10).

Конфокальная лазерная сканирующая микроскопия роговицы

Десцеметова мембрана в норме прозрачна и не визуализируется при конфокальной микроскопии.

Задний эпителий представляет собой монослой гексагональных или полигональных плоских клеток с равномерно светлой поверхностью на фоне чётких тёмных межклеточных границ (рис. 7-11).

Конфокальная лазерная сканирующая микроскопия роговицы

В приборе заложена возможность мануального или автоматического подсчёта плотности клеток, их площади и коэффициента вариабельности.

Кератоконус характеризуется значительными изменениями в переднем эпителии и строме роговицы.

Передний эпителий. Обнаруживают различные варианты эпителиопатии (рис. 7-12):

Конфокальная лазерная сканирующая микроскопия роговицы

Статья из книги: Офтальмология. Национальное руководство | Аветисов С.Э.

Источник

S.Ae. Avetisov, G.B. Egorova
GU NII of Eye Diseases RAMN, Moscow

Purpose: to study possibilities and information value of confocal microscopy in normal subjects and in patients with some pathologic conditions of cornea.
Materials and methods: Confocal microscopy was performed in 40 subjects (75 eyes) : 6 participants were healthy volunteers with mild myopia, 24 – had keratoconus of I – IV stages,4 patients were after penetrating corneal transplantation, 4– after refractive corneal surgery , 1– after herpetic keratitis, 1– with Fuchs dystrophy. Confocal microscopy was made with «Confoscan – 4,» Nidek (magnification х 500).
Results and conclusion: Confocal microscopy is highly informative non–invasive method, which allows detecting subtle changes on cellular and micro structural levels, studing in details pathogenic mechanisms in various diseases and surgery.

Для успешного решения задач оптической и хирургической коррекции различных рефракционных нарушений большое значение имеет адекватная оценка функционального и морфологического состояния роговой оболочки. Изучение структурных изменений при различных заболеваниях роговицы необходимо также для оценки тяжести патологического процесса, эффективности лечения и определения тактики ведения больного.
В связи с этим целесообразность разработки неинвазивных методов исследования, позволяющих оценить степень морфологических изменений в роговице, является неоспоримой.
В течение последнего десятилетия все большее распространение получают офтальмологические методы диагностики, позволяющие получать информацию с визуализацией результатов исследования. Ультразвуковые методы, компьютерная видеокератография позволили значительно расширить и углубить знания и понятия о различных аспектах болезней роговицы и хирургических процедур.
Одним из наиболее современных методов исследования роговицы является прижизненная конфокальная микроскопия. Данный метод в силу оригинальной конструкции микроскопа и его большой разрешающей способности позволяет визуализировать живые ткани роговицы на клеточном уровне, измерить толщину каждого из ее слоев, оценить количество, форму, размер клеток эпителия, стромы, заднего эпителия роговицы, степень десквамации эпителиальных клеток при воздействии контактных линз и хирургических вмешательств [1 –7].
Цель данного исследования – изучение возможностей и информативности конфокальной микроскопии в норме и при некоторых патологических состояниях роговой оболочки глаза.
Материал и методы исследования
Конфокальная микроскопия роговицы была проведена у 40 пациентов (75 глаз): 6 пациентов (12 глаз) были здоровыми добровольцами или имели миопию слабой степени, 24 (48 глаз) –с кератоконусом 1–4 стадий, 4 пациента (4 глаза) –после сквозной пересадки роговицы, 4 (8 глаз) –после рефракционных операций на роговице, 1пациент (1 глаз) –после перенесенного герпетического кератита, 1 пациент (2 глаза ) –с дистрофией Фукса.
Исследование проводили с помощью конфокального микроскопа «Confoscan – 4», Nidek (увеличение х 500).
Данный прибор позволяет исследовать роговицу по всей ее толщине, размер исследуемой зоны составляет 440 х 330 мкм. Толщина слоя сканирования составляет 5 мкм. Исследование проводится с использованием иммерсионной жидкости, которая находится между роговицей и объективом линзы, в результате чего исключается непосредственный контакт линзы и роговицы и сводится к минимуму риск повреждения эпителия. Проведение данного исследования возможно без применения анестетиков. В качестве иммерсионной жидкости используется гель («Видисик»). Линза с каплей геля подводится к роговице до касания, толщина слоя иммерсионной жидкости должна быть равна 2 мм. Конструкция прибора позволяет исследовать роговицу в центральной зоне и ее парацентральных участках (рис.1, 2).
Результаты проведенных исследований
При обследовании здоровых добровольцев и пациентов с миопией слабой степени получены данные, характеризующие нормальную картину всех слоев роговой оболочки глаза.
Роговичный эпителий состоит из 5–6 слоев и трех разных видов клеток:
1– плоские поверхностные (2–3 слоя);
2 – шиповидные (крылатые) (2–3) слоя;
3 –цилиндрические базальные (1 слой).
Цилиндрические базальные клетки обладают митотической активностью. Средняя толщина всего эпителия приблизительно 50 мкм. С помощью конфокальной микроскопии можно определить особенности различных клеток.
Поверхностный слой эпителия представлен полигональными клетками, обычно с четким ядром, четкими границами и гомогенной плотностью. Ядра обычно ярче, чем окружающая их цитоплазма, также можно различить перинуклеарное темное кольцо (рис. 3).
Базальные клетки – маленькие полигональные, более плотные без четкого ядра и с очень четкими яркими границами (рис.4). Крылатые клетки обладают переходными характеристиками, ядра могут быть нечеткими или могут не определяться.
Боуменова и десцеметова мембраны в норме не визуализируются, т.к. прозрачны и не отражают свет.
Конфокальная микроскопия дает возможность визуализировать волокна нервных сплетений роговицы. Субэпителиальное нервное сплетение находится под боуменовой мембраной. Его нервные волокна, перфорируя боуменову мембрану на уровне базального эпителия, формируют суббазальное нервное сплетение, волокна которого идут поверхностно, обеспечивая иннервацию базального эпителиального слоя, и заканчиваются в области поверхностных эпителиальных слоев.
В качестве критериев оценки нервных волокон используют такие показатели, как плотность, ширина, извилистость, рефлективность, ориентация, ветвление. В норме можно увидеть длинные, параллельно идущие тяжи или пучки нервов [2,7]. Часто нервные волокна яркие, хорошо контрастирующие на фоне непрозрачного темного фона (рис. 5).
Строма роговицы занимает от 80 до 90% толщины роговицы и состоит из 3 основных компонентов: клеточного, бесклеточного и нейросенсорного.
Клеточный компонет в основном состоит из кератоцитов и составляет примерно 5% всего вещества. Бесклеточный –от 90 до 95 % стромы, включает правильные (регулярные) коллагеновые пластинчатые структуры и интерстициальную ткань. Нейросенсорный компонент представлен стромальным глубоким нервным сплетением.
Типичная конфокальная микроскопическая картина стромы включает несколько ярких неправильной овальной формы тел, которые являются ядрами кератоцитов и лежат в толще прозрачного (темно–серого или черного) бесклеточного матрикса. При отсутствии патологических изменений стромы визуализация внеклеточных структур невозможна из–за их прозрачности. Строма может быть условно разделена на субслои: передний (непосредственно под боуменовой мембраной), передне–средний, средний и задний. Средняя плотность кератоцитов выше в передней строме (10% толщины), их количество уменьшается по направлению к задним слоям. Плотность клеток прогрессивно уменьшается от передней (100%) к задней строме (53,7%).
В передней строме ядра кератоцитов имеют округлую бобовидную форму, в задней строме – овальную (рис. 6,7).
В ряде случаев кератоциты имеют различную яркость. Различие в рефлективности зависит от их метаболического возбуждения, поэтому их называют активированными кератоцитами (рис. 8). Их можно обнаружить и в здоровых роговицах – это «стрессовые» клетки, их деятельность направлена на поддержание внутреннего гомеостаза роговицы и они являются типичными для воспалительных и рубцовых процессов (например, при заживлении после эксимер–лазерных операций) [2].
В строме (особенно в передне–средней и средней) возможна визуализация нервных волокон из глубокого роговичного сплетения. Эти волокна визуализируются в виде тонких, ярких рефлектирующих полос, ориентированных либо вертикально, либо по косой параллельно друг другу, часто видна бифуркация в виде буквы Y (рис. 9).
Задний эпителий роговицы выглядит как яркий одноклеточный слой из гексогональных или полигональных плоских клеток. Ядра не определяются, а тело клетки гомогенно яркое, светлое. Края клеток визуализируются, как тонкие серые линии. Чем выше плотность клеток, тем меньше их размер. Возможен мануальный или автоматический подсчет количества клеток, расчет их плотности, площади, коэффициента вариабельности (рис. 10).
При кератоконусе морфологические изменения достаточно многообразны, особенно в области роговицы, вовлеченной в эктатический процесс.
В эпителиальном слое могут определяться различные варианты эпителиопатии. Поверхностные клетки становятся деформированными и вытянутыми в косом направлении, клеточные границы нечеткие. Участки с большей отражательной способностью свидетельствуют о нарушении прозрачности (рис. 11).
Цвет клеток характеризует состояние их жизнедеятельности. Светлые клетки – с более сглаженной поверхностью и большей отражательной способностью, что является следствием их атрофии. Большое количество светлых клеток свидетельствует об их повышенной десквамации (рис. 12).
Неравномерный рефлекс с боуменовой мембраны косвенно свидетельствует о нарушении ее структуры и прозрачности.
В базальном эпителии обнаруживается деформация и неправильность формы клеток и иногда возможно определить небольшие зоны, в которых базальный эпителий отсутствует (рис. 13).
Субэпителиальное нервное сплетение в общем хорошо визуализируется и может иметь нормальную морфологию (рис. 14).
Строма роговицы при кератоконусе всегда вовлечена в патологический процесс: повышенная отражательная способность передних отделов стромы и стрии Вогта в задних отделах стромы являются типичными находками. Основные изменения стромы представлены микростриями, которые выглядят, как разнородные тонкие линии со сниженной отражательной способностью (гипорефлекторные), контрастирующие с более светлой стромой и располагаются внеклеточно.
Эти проявления являются следствием дегенеративных процессов и могут быть микроскладками (как и стрии Вогта) или микротрещинами экстрацеллюлярного матрикса. Микрострии обнаруживаются во всех слоях роговичной стромы. Количество кератоцитов уменьшено, видны их значительные дегенеративные изменения (рис. 15).
Изменения в строме могут быть многообразными. В частности, примером может служить изменение формы и ориентации кератоцитов в средней строме при кератоконусе 3 стадии. Отмечаются наличие большого количества кератоцитов с повышенной отражательной способностью, выраженная тенденция к помутнению (рис. 16).
Необходимо отметить, что чем больше выражены клинические признаки кератоконуса и тяжелее патологический процесс, тем большие изменения выявляются при конфокальной микроскопии.
С помощью данного метода можно исследовать состояние трансплантата после операции сквозной пересадки роговицы. Изменения могут быть разнообразными и выраженными в различной степени. На рисунке 17 представлена картина передней стромы роговичного трансплантата: визуализируются кератоциты с нечеткими размытыми границами, выявляются участки стромы с пониженной прозрачностью, что может быть следствием дистрофического процесса с элементами отека. В различных слоях трансплантата могут определяться стромальные складки (рис.18).
На рисунке 19 представлен пример морфологической картины после операции кератомилеза. Можно отметить снижение прозрачности стромы роговицы, нарушение архитектоники волокнистых структур, очень малое количество кератоцитов, нечетко контурируемых. Яркие рефлектирующие точки являются включениями металлической пыли, которые образовались, по–видимому, в результате использования режущего инструмента низкого качества. При биомикроскопии в этом случае можно видеть световые блики. Кроме этого, можно выявить участки помутнения в области боуменовой мембраны, отек нервных волокон и другие изменения (рис. 20).
Герпетические поражения роговицы приводят к грубым структурным изменениям. На рисунке 21 представлены изменения роговицы после перенесенного герпетического кератита (при биомикроскопии выявляется облачковидное помутнение в эпителии и субэпителиальных слоях). Морфологические изменения характеризуются отсутствием различимых межклеточных границ, большим количеством рефлексирующих зон, что свидетельствует о появлении новых характеристик эпителиальной ткани, связанных с явлением кератинизации. Возможно, причиной является нейротрофический процесс, вызывающий понижение структурной и функциональной организации эпителия.
На рисунке 22 представлены изменения, характерные для тяжелого поражения эндотелия с формированием поверхности по типу шагреневой кожи при дистрофии Фукса.
Таким образом, можно утверждать, что конфокальная микроскопия является высокоинформативным неинвазивным методом исследования, позволяющим выявить тонкие изменения роговицы на клеточном и микроструктурном уровне, более полно изучить патогенетические механизмы при различных заболеваниях или хирургических вмешательствах.
Метод дает возможность детального изучения и визуализации всех роговичных структур. Дальнейшие исследования должны быть направлены на накопление материала и стандартизацию микроскопической картины роговицы в различных клинических ситуациях.

Читайте также:  Болезни роговицы глаз человека

Источник