Какие изображения получаются на сетчатке глаза

Глаз – орган, отвечающий за зрительное восприятие окружающего мира. Он состоит из глазного яблока, которое при помощи зрительного нерва соединено с определенными мозговыми участками, и вспомогательных аппаратов. К таким аппаратам можно отнести слезные железы, мышечные ткани и веки.

Особенность строения

Глазное яблоко покрыто специальной защитной оболочкой, которая защищает его от различных повреждений, склерой. Внешняя часть такого покрытия имеет прозрачную форму и называется роговицей. Роговидная область, одна из самых чувствительных частей человеческого организма. Даже небольшое воздействие на эту область приводит к тому, что происходит закрытие глаз веками.

Под роговицей находится радужная оболочка, цвет которой может различаться. Между этими двумя слоями расположена специальная жидкость. В строении радужки есть специальное отверстие для зрачка. Его диаметр имеет свойство расширяться и сужаться в зависимости от поступающего количества света. Под зрачком находится оптическая линза, хрусталик, напоминающая своеобразное желе. Его крепление к склере осуществляется при помощи специальных мышц. За оптической линзой глазного яблока расположена область, получившая название — стекловидное тело. Внутри глазного яблока расположен слой, имеющий название, глазное дно. Данный участок покрыт сетчатой оболочкой. Данный слой имеет в своем составе тонкие волокна, являющимся окончанием глазного нерва.

какое изображение получается на сетчатке глазаПосле того как лучи света пройдут сквозь хрусталик, они проникают через стекловидное тело и попадают на внутреннюю очень тонкую оболочку глаза — сетчатку

Как происходит построение изображения

Изображение предмета, формируемое на сетчатке глаза, является процессом совместной работы всех составляющих глазного яблока. Поступающие световые лучи преломляются в оптической среде глазного яблока, воспроизводя на ретине изображения окружающих предметов. Пройдя сквозь все внутренние слои, свет, попадая на зрительные волокна, раздражает их и в определенные мозговые центры передаются сигналы. Благодаря этому процессу, человек способен к зрительному ощущению предметов.

Очень долгое время исследователей волновал вопрос, какое изображение получается на сетчатке глаза. Одним из первых исследователей этой темы стал И. Кеплер. В основе его исследований лежала теория о том, что изображение, построенное на сетчатой оболочке глаза, находится в перевернутом состоянии. Для того чтобы доказать эту теорию, он построил специальный механизм, воспроизведя процесс попадания световых лучей на сетчатую оболочку.

Немногим позже данный эксперимент был повторен французским исследователем Р. Декартом. Для проведения эксперимента он использовал бычий глаз, с удаленным слоем на задней стенке. Этот глаз он поместил на специальном постаменте. В результате на задней стенке глазного яблока, он смог наблюдать перевернутую картинку.

Исходя из этого, следует вполне закономерный вопрос, почему человек видит окружающие предметы правильно, а не в перевернутом виде? Это происходит в результате того, что вся зрительная информация поступает в мозговые центры. Помимо этого, в определенные отделы головного мозга, поступает информация от других органов чувств. В результате анализа, мозг корректирует картинку и человек получает правильную информацию об окружающих его предметах.

изображение на сетчатке глазаСетчатая оболочка – центральное звено нашего зрительного анализатора

Этот момент был очень точно подмечен поэтом У. Блейком:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В начале девятнадцатого века, в Америке, был поставлен интересный эксперимент. Его суть заключалась в следующем. Испытуемый одевал специальные оптические линзы, изображение на которых имело прямое построение. В результате этого:

  • зрение экспериментатора полностью перевернулось;
  • все окружающие его предметы стали находится кверху ногами.

Продолжительность эксперимента привела к тому, что в результате нарушения зрительных механизмов с другими органами чувств, начала развиваться морская болезнь. Приступы тошноты одолевали ученого в течение трех дней, с момента начала эксперимента. На четвертый день опытов, в результате освоения мозга с данными условиями, зрение вернулось к нормальному состоянию. Задокументировав эти интересные нюансы, экспериментатор снял оптический прибор. Так как работа мозговых центров, была направлена на получение картинки, полученной с помощью прибора, в результате его снятия зрение испытуемого снова перевернулось вверх тормашками. На этот раз его восстановление заняло около двух часов.

изображение предмета формируемой на сетчатке глаза являетсяЗрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов

При проведении дальнейших исследований выяснилось, что проявлять такую способность к адаптации, способен лишь мозг человека. Использование таких приборов на обезьянах, привело к тому, что они впадали в коматозное состояние. Это состояние сопровождалось угасанием рефлекторных функций и низкими показателями кровяного давления. В точно такой же ситуации, таких сбоев в работе организма человека не наблюдается.

Довольно интересен тот факт, что и мозг человека не всегда может справиться со всей поступающей зрительной информацией. Когда происходит сбой в работе определенных центров, появляются зрительные иллюзии. В результате чего, рассматриваемый предмет может изменять свою форму и строение.

Существует еще одна интересная отличительная черта зрительных органов. В результате изменения дистанции от оптической линзы до определенной фигуры, изменяется дистанция и до её изображения. Возникает вопрос, в результате чего картинка сохраняет свою четкость, когда человеческий взгляд меняет свой фокус, с предметов, находящихся в значительном удалении, на расположенные более близко.

Читайте также:  Периферические дистрофии сетчатки купить

Результат этого процесса достигается при помощи мышечных тканей, расположенных возле хрусталика глазного яблока. В результате сокращений они изменяют его контуры, изменяя фокусировку зрения. В процессе, когда взгляд сфокусирован на предметах, находящихся в отдалении, данные мышцы находятся в состоянии покоя, что почти не изменяет контур хрусталика. Когда фокусировка взгляда направлена на предметах, расположенных вблизи, мышцы начинают сокращаться, хрусталик искривляется, а сила оптического восприятия увеличивается.

Данная особенность зрительного восприятия получала название аккомодацией. Под этим термином рассматривается тот факт, что зрительные органы способны приспосабливаться к фокусировке на предметах, расположенных на любом удалении.

Долгое рассматривание предметов, расположенных очень близко, может вызвать сильное напряжение зрительных мышц. В результате их усиленной работы, может появиться зрительное утопление. Для того чтобы избежать этого неприятного момента, при чтении или работе за компьютером, расстояние должно составлять не менее четверти метра. Такую дистанцию называют дистанцией ясного зрения.

изображение предмета на сетчатке глаза оптическую систему глаза составляют роговица, хрусталик и стекловидное тело.

Преимущество двух зрительных органов

Наличие двух зрительных органов, существенно увеличивает размеры поля восприятия. Кроме того, появляется возможность различать расстояние, отделяющее предметы от человека. Это происходит потому, что на сетчатой оболочке обоих глаз, происходит разное построение картинки. Так картинка, воспринимаемая левым глазом, соответствует взгляду на предмет с левой стороны. На втором глазу картинка строится прямо противоположно. В зависимости от приближённости предмета, можно оценить разницу в восприятии. Такое построение изображения на сетчатке глаза позволяет различать объемы окружающих предметов.

Источник

Дисклеймер: многабукаф и сложных, умных и длинных слов. 

За восприятие зрительного сигнала в НСП отвечает фоторецепторный пигмент родопсин, поглощающий квант света и перестраивающий себя. В процессе передачи сигнала на плазматическую мембрану принимают участие четыре белка: родопсин, трансдуцин, фосфодиэстераза сGMP и cGMP-зависимый катионный канал, а cGMP, являясь вторичным мессенджером, непосредственно передает сигнал с мембраны дисков на наружную плазматическую мембрану. Электрофизиологический ответ фоторецепторной клетки на световой стимул длится в течение сотен миллисекунд, а затем прекращается благодаря существования в НСП механизмов, ответственных за выключение фосфодиэстеразного каскада и восстановление темнового состояния.

А теперь вот тут вот всё подробно:

Как палочки, так и колбочки содержат светочувствительные пигменты – рецепторы светового излучения. Во всех палочках человека пигмент один и тот же; колбочки делятся на три типа, каждый из них со своим особым зрительным пигментом. Эти четыре пигмента чувствительны к различным длинам световых волн, и в случае колбочек эти различия составляют основу цветного зрения. В палочках большая часть зрительного пигмента (называемого родопсином) локализована в мембране фоторецепторных дисков. Под воздействием света молекула родопсина поглощает единственный квант видимого света (фотон), что приводит к химической перестройке зрительного рецептора.

В результате поглощения кванта света молекулой родопсина и последующих за этим биохимических реакций происходит закрытие катионных (Na+/Са2+) каналов, что приводит к уменьшению темнового тока и гиперполяризации (увеличению наружного положительного заряда) плазматической мембраны клетки. Свет, повышая потенциал на мембране рецепторной клетки (гиперполяризуя ее), уменьшает выделение медиатора. Таким образом, стимуляция, как ни странно на первый взгляд, выключает рецепторы. 

Первый шаг процесса фототрансдукции – поглощение кванта света фоторецепторным пигментом, родопсином и переход родопсина в фотоактивированное состояние (R —> R*). 

Поглощение родопсином кванта света приводит к ряду его фотохимических превращений – фотолизу. Первичным актом в этом процессе является изомеризация 11-цис-ретиналя в полностью транс-форму. Изомеризация ретиналя является единственным светозависимым процессом в ходе светоактивации родопсина, все остальные стадии фотолиза светонезависимые, они сопряжены с конформационными перестройками в молекуле опсина и реакциями протонирования–депротонирования основания Шиффа, образованного между ретиналем и e-аминогруппой остатка лизина-296 опсина. Между поглощением фотона и изомеризацией ретиналя проходит около 200 фемтосекунд. За этим событием следует образование в течение миллисекунд нескольких промежуточных форм родопсина, каждая из которых характеризуется своим спектром поглощения. Наибольшую важность для биохимических реакций, приводящих к возникновению фоторецепторного ответа, представляет один из интермедиатов фотолиза родопсина – метародопсин II, который содержит непротонированное основание Шиффа с полностью транс-ретиналем и характеризуется значительными конформационными перестройками в сравнении с темновым родопсином.

Метародопсин II (R*) выступает в роли катализатора в процессе активации следующего белка зрительнго каскада, трансдуцина (Т). Ta находится в комплексе с молекулой GDP (Ta -GDP) и связана с димером Тbg . Комплекс (Ta -GDP)-Тbg локализуется на внешней поверхности мембраны дисков и обладает повышенным сродством к метародопсину II. В результате связывания R* с (Ta -GDP)-Тbg индуцируется обмен связанного с Ta GDP на GTP. Комплекс R*-(Ta -GDP)-Тbg быстро диссоциирует на R*, активный комплекс Ta*-GTP и Тbg . Освобождающийся R* способен активировать другую молекулу трансдуцина (рис. 2, III). Активация сотен или даже тысяч молекул трансдуцина единственной молекулой фотовозбужденного родопсина является первым этапом усиления в процессе передачи зрительного сигнала.

Читайте также:  Друз на сетчатке глаза

T*a-GTP, в свою очередь, активирует следующий белок зрительного каскада – фосфодиэстеразу (PDE) циклического GMP (cGMP). PDEa- и PDEb -субъединицы осуществляют каталитическую функцию гидролица cGMP, а PDEg-субъединица является внутренним ингибитором фермента.

По аналогии с другими рецепторными системами, сопряженными с G-белками, в системе родопсин– трансдуцин-фосфодиэстераза cGMP, PDE является эффекторным белком, а сGMP – вторичным мессенджером. Однако в отличие от большинства рецепторных систем, которые служат для передачи сигнала с внешней стороны клеточной мембраны внутрь клетки, белки зрительного каскада передают сигнал с мембраны дисков, расположенной внутри НСП, на наружную плазматическую мембрану. Рассмотрим этот процесс более подробно. В темноте PDE неактивна, и в цитоплазме палочки поддерживается высокий уровень cGMP за счет активности фермента гуанилатциклазы. В результате этого большая часть сGMP-зависимых катионных (Na+/Са2+) каналов в плазматической мембране НСП находится в открытом состоянии и катионы Na+ и Са2+ свободно диффундируют из внеклеточного пространства в цитозоль, что приводит к деполяризации плазматической мембраны. Проникающие в цитоплазму катионы Na+ удаляются из клетки Na+/K+ — ATP-азой, расположенной в теле палочки (внутреннем сегменте). Внутриклеточная концентрация Са2+ поддерживается на постоянном уровне находящимся в плазматической мембране НСП Na+/Са2+, К+ -катионообменником.

Взаимодействуя с PDE, T*a-GTP снимает ингибирующее воздействие PDEg на фермент, при этом для полной активации PDE необходимо присутствие двух молекул T*a-GTP на молекулу фермента (по одной на каждую PDEg-субъединицу). Активированная фосфодиэстераза (PDE*) гидролизует множество молекул сGMP (до трех тысяч молекул на молекулу активного фермента), и этот процесс является вторым этапом усиления зрительного сигнала. Снижение внутриклеточной концентрации сGMP приводит к закрытию cGMP-зависимых катионных каналов и гиперполяризации плазматической мембраны. 

А инфа взята отсюда, только удалено всё лишнее. Если вам непонятно, бегом по ссылке и читайте полный разбор с пояснениями и рисуночками.

Источник

Глаз – тело в виде шаровидной сферы. Он достигает диаметра 25 мм и веса 8 г, является зрительным анализатором. Фиксирует увиденное и передает изображение на сетчатку, затем по нервным импульсам в мозг.

Прибор оптической зрительной системы – человеческий глаз умеет сам настраиваться, в зависимости от поступающего света. Он способен увидеть удаленные предметы и находящиеся близко.

Строение сетчатки

Изображение предметов на сетчатке глазаСетчатка имеет очень сложное строение

Глазное яблоко представляет собой три оболочки. Внешняя – непрозрачная соединительная ткань, которая поддерживает форму глаза. Вторая оболочка – сосудистая, содержит большую сеть сосудов, которая питает глазное яблоко.

По цвету она черная, поглощает свет, не давая ему рассеиваться. Третья оболочка – радужная, цветная, от ее расцветки зависит цвет глаз. В центре имеется зрачок, который регулирует поток лучей и меняется в диаметре, зависит от интенсивности освещения.

Оптическая система глаза состоит из роговицы, хрусталика, стекловидного тела. Хрусталик может принимать размеры маленького шарика и растягиваться до больших размеров, меняя фокус расстояния. Он способен менять свою кривизну.

Глазное дно покрывает сетчатка, имеющая толщину до 0,2 мм. Она состоит из слоистой нервной системы. Сетчатка имеет большую зрительную часть – фоторецепторные клетки и слепую переднюю часть.

Зрительные рецепторы сетчатки – палочки и колбочки. Эта часть состоит из десяти слоев, и поддается рассмотрению только под микроскопом.

Как формируется изображение на сетчатке

Изображение предметов на сетчатке глазаПроекция изображения на сетчатку

Когда лучи света проходят хрусталик, перемещаясь через стекловидное тело, они попадают на сетчатку, находящуюся на плоскости глазного дна. Напротив зрачка на сетчатке есть желтое пятно – это центральная часть, изображение на нем самое четкое.

Остальная часть – это периферическая. Центральная часть позволяет четко рассматривать предметы до мельчайших деталей. С помощью периферического зрения человек способен видеть не очень четкую картинку, но ориентироваться в пространстве.

Восприятие картинки происходит с проекцией изображения на сетчатку глаза. Фоторецепторы возбуждаются. Эта информация посылается в мозг и обрабатывается в зрительных центрах. Сетчатка каждого глаза передает через нервные импульсы свою половину изображения.

Благодаря этому и зрительной памяти возникает общий зрительный образ. На сетчатке отображается картинка в уменьшенном виде, перевернутой. А перед глазами она видится прямая и в натуральных размерах.

Снижение зрения при повреждениях сетчатки

Повреждение сетчатки ведет к снижению зрения. Если повреждена центральная ее часть, то может привести к полной потере зрения. О нарушениях периферического зрения человек долгое время может не догадываться.

Повреждение выявляется при проверке именно периферического зрения. При поражении большого участка этой части сетчатки происходит:

  1. дефект зрения в виде выпадения отдельных фрагментов;
  2. снижение ориентации при плохой освещенности;
  3. изменение восприятия цветов.

Изображение предметов на сетчатке глаза, контроль изображения мозгом

Изображение предметов на сетчатке глазаКоррекция зрения с помощью лазера

Если световой поток фокусируется перед сетчаткой, а не в центре, то это дефект зрения называется близорукостью. Близорукий человек плохо видит вдаль и хорошо видит вблизи. Когда световые лучи фокусируются за сетчаткой, то это называется дальнозоркостью.

Читайте также:  Выявление слепого пятна на сетчатке

Человек, наоборот, плохо видит близко и хорошо различает предметы вдали. Спустя некоторое время, если глаз не видит изображения предмета, оно исчезает с сетчатки. Образ, запомнившийся зрительно, хранится в сознании человека, на протяжении 0,1 сек. Это свойство называется инерцией зрения.

Как изображение контролируется мозгом

Еще ученый Иоганн Кеплер понял, что проектируемое изображение перевернутое. А другой ученый – француз Рене Декарт провел опыт и подтвердил этот вывод. Он с бычьего глаза убрал задний непрозрачный слой.

Вставил глаз в отверстие в стекле и увидел на стенке глазного дна картинку за окном в перевернутом виде. Таким образом, утверждение, что все изображения, подающие на сетчатку глаза, имеют перевернутый вид, было доказано.

А то, что мы видим изображения неперевернутыми, является заслугой мозга. Именно мозг корректирует непрерывно зрительный процесс. Это тоже доказано научным и опытным путем. Психолог Дж. Стреттон в 1896 году решил поставить эксперимент.

Он использовал очки, благодаря которым, на сетчатке глаза все предметы имели прямой вид, а не перевернутый. Тогда, как сам Стреттон видел перед собой перевернутые картинки. У него началось несогласованность явлений: видение глазами и ощущение других чувств. Появились признаки морской болезни, его тошнило, чувствовался дискомфорт и дисбаланс в организме. Продолжалось это три дня.

На четвертый день ему стало лучше. На пятый – он чувствовал себя прекрасно, как и до начала эксперимента. То есть мозг приспособился к изменениям и привел все в норму через некоторое время.

Стоило ему снять очки, как все опять встало с ног на голову. Но в этом случае мозг быстрее справился с задачей, уже через полтора часа все восстановилось, и картинка стала нормальной. Такой же опыт проводили с обезьяной, но она не выдержала эксперимента, впала как бы в коматозное состояние.

Особенности зрения

Изображение предметов на сетчатке глазаПалочки и колбочки

Еще одна особенность зрения – аккомодация, это способность глаз приспосабливаться видеть как на близком расстоянии, так и на далеком. На хрусталике имеются мышцы, которые могут изменять кривизну поверхности.

При взгляде на предметы, расположенные на дальнем расстоянии, кривизна поверхности небольшая и мышцы расслаблены. При рассмотрении предметов на близком расстоянии, мышцы приводят хрусталик в сжатое состояние, кривизна увеличивается, следовательно, и оптическая сила тоже.

Но на очень близком расстоянии, напряжение мышц становится наивысшим, хрусталик может деформироваться, глаза быстро утомляются. Поэтому предельное расстояние для чтения и выполнения письма составляет 25 см до предмета.

На сетчатках левого и правого глаза получаемые изображения отличаются друг от друга, потому, что каждый глаз в отдельности видит предмет со своей стороны. Чем ближе рассматриваемый предмет, тем различия ярче.

Глаза видят предметы объемно, а не в плоскости. Эта особенность называется стереоскопическим зрением. Если долго рассматривать какой-то рисунок или предмет, то переместив глаза на чистое пространство, можно увидеть очертание на мгновение этого предмета или рисунка.

Факты о зрение

Изображение предметов на сетчатке глазаЕсть очень много интересных фактов о строении глаза

Интересные факты о зрении человека и животных:

  • Зеленые глаза имеют только 2% населения земного шара.
  • Разные глаза по цвету бывают у 1% всего населения.
  • Красные глаза бывают у альбиносов.
  • Угол обзора у человека от 160 до 210°.
  • У кошек глаза поворачиваются до 185°.
  • У лошади обзор глаз составляет 350°.
  • Гриф видит мелких грызунов с высоты 5 км.
  • Стрекоза имеет уникальный зрительный орган, который состоит из 30 тыс. отдельных глазков. Каждый глазок видит отдельный фрагмент, и мозг соединяет все в большую картинку. Такое зрение называется фасеточным. Стрекоза видит в секунду 300 изображений.
  • У страуса объем глаза больше, чем объем мозга.
  • Глаз крупного кита весит 1 кг.
  • Крокодилы, когда едят мясо плачут, освобождаясь от излишней соли.
  • Есть среди скорпионов виды, имеющие до 12 глаз, у некоторых пауков насчитывается 8 глаз.
  • Красный цвет не различают собаки, кошки.
  • Пчела тоже не видит красного цвета, но различает другие, хорошо чувствует ультрафиолетовое излучение.
  • Распространенное мнение, что коровы и быки реагируют на красный цвет – ошибочное. На корридах быки обращают внимание не на красный цвет, а на движение тряпки, так как они еще близорукие.

Глазной орган сложный по структуре и функциональности. Каждая составная его часть индивидуальна и неповторима, в том числе и сетчатка. От работы каждого отдела отдельно и вместе взятых, зависит правильное и четкое восприятие изображения, острота зрения и видение мира в цветах и красках.

Про близорукость и методах ее лечения — в видеосюжете:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Источник