Как сетчатка поглощает лучи света

Зубр

Как сетчатка поглощает лучи света

Самая передняя часть глаза называется роговица. Она прозрачная (пропускает свет) и выпуклая (преломляет свет).

За роговицей находится радужная оболочка, в центре которой расположено отверстие – зрачок. Радужная оболочка состоит из мышц, которые могут изменять размер зрачка, и таким образом регулировать количество света, поступающего в глаз. В состав радужной оболочки входит пигмент меланин, который поглощает вредные ультрафиолетовые лучи. Если меланина много, то глаза получаются карие, если среднее количество – зеленые, если мало – голубые.

За зрачком располагается хрусталик. Это прозрачная капсула, заполненная жидкостью. За счет собственной упругости хрусталик стремится стать выпуклым, при этом глаз фокусируется на близких предметах. При расслаблении ресничной мышцы связки, удерживающие хрусталик, натягиваются и он становится плоским, глаз фокусируется на дальних предметах. Такое свойство глаза называется аккомодация.

За хрусталиком располагается стекловидное тело, заполняющее глазное яблоко изнутри. Это третий, последний компонент преломляющей системы глаза (роговица – хрусталик – стекловидное тело).

За стекловидным телом, на внутренней поверхности глазного яблока располагается сетчатка. Она состоит из зрительных рецепторов – палочек и колбочек. Под действием света рецепотры возбуждаются и передают информацию в мозг. Палочки находятся в основном на периферии сетчатки, они дают только черно-белое изображение, но зато им достаточно слабого освещения (могут работать в сумерках). Зрительный пигмент палочек – родопсин, производное витамина А. Колбочки сосредоточены в центре сетчатки, они дают цветное изображение, требуют яркого света. В сетчатке имеются два пятна: желтое (в нем самая высокая концентрация колбочек, место наибольшей остроты зрения) и слепое (в нем рецепторов нет совсем, из этого места выходит зрительный   нерв).

За сетчаткой (сетчатой оболочкой глаза, самой внутренней) расположена сосудистая оболочка (средняя). Она содержит кровеносные сосуды, питающие глаз; в передней части она видоизменяется в радужную оболочку и ресничную мышцу.

За сосудистой оболочкой располагается белочная оболочка, покрывающая глаз снаружи. Она выполняет функцию защиты, в передней части глаза она видоизменена в роговицу.

Еще можно почитать

БОЛЬШЕ ИНФОРМАЦИИ: Первый глаз, Второй глаз
ЗАДАНИЯ ЧАСТИ 2: Зрение

Тесты и задания

Выберите один, наиболее правильный вариант. Функция зрачка в организме человека состоит в
1) фокусировании лучей света на сетчатку
2) регулировании светового потока
3) преобразовании светового раздражения в нервное возбуждение
4) восприятии цвета

Выберите один, наиболее правильный вариант. Черный пигмент, поглощающий свет, располагается в органе зрения человека в
1) слепом пятне
2) сосудистой оболочке
3) белочной оболочке
4) стекловидном теле

Выберите один, наиболее правильный вариант. Светочувствительные рецепторы глаза – палочки и колбочки – находятся в оболочке
1) радужной
2) белочной
3) сосудистой
4) сетчатой

Выберите один, наиболее правильный вариант. Энергия световых лучей, проникших в глаз, вызывает нервное возбуждение
1) в хрусталике
2) в стекловидном теле
3) в зрительных рецепторах
4) в зрительном нерве

Выберите один, наиболее правильный вариант. За зрачком в органе зрения человека располагается
1) сосудистая оболочка
2) стекловидное тело
3) хрусталик
4) сетчатка

Выберите один, наиболее правильный вариант. При рассматривании предмета глаза человека непрерывно двигаются, обеспечивая
1) предупреждение ослепления глаза
2) передачу импульсов по зрительному нерву
3) направление световых лучей на желтое пятно сетчатки
4) восприятие зрительных раздражений

Выберите один, наиболее правильный вариант. Зрение человека зависит от состояния сетчатки, так как в ней расположены светочувствительные клетки, в которых
1) образуется витамин А
2) возникают зрительные образы
3) черный пигмент поглощает световые лучи
4) формируются нервные импульсы

СЕТЧАТКА
1. Установите соответствие между зрительными рецепторами и их особенностями: 1) колбочки, 2) палочки. Запишите цифры 1 и 2 в правильном порядке.

А) воспринимают цвета
Б) активны при хорошем освещении
В) зрительный пигмент родопсин
Г) осуществляют черно-белое зрение
Д) содержат пигмент йодопсин
Е) по сетчатке распределены равномерно

2. Установите соответствие между характеристикой и видом фоторецептора: 1) палочки, 2) колбочки. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) клетки длинные и тонкие
Б) воспринимают цвет
В) содержат три пигмента
Г) расположены в основном по периферии сетчатки
Д) обеспечивают зрение в сумерках

ОБОЛОЧКИ
Установите соответствие между характеристиками и оболочками глазного яблока: 1) белочная, 2) сосудистая, 3) сетчатка. Запишите цифры 1-3 в порядке, соответствующем буквам.

А) содержит несколько слоёв нейронов
Б) содержит в клетках пигмент
В) содержит роговицу
Г) содержит радужку
Д) защищает глазное яблоко от внешних воздействий
Е) содержит слепое пятно

ПУТЬ ЛУЧА
1. Установите путь прохождения луча света в глазном яблоке

1) зрачок
2) стекловидное тело
3) сетчатка
4) хрусталик

2. Установите последовательность прохождения светового сигнала к зрительным рецепторам. Запишите соответствующую последовательность цифр.
1) зрачок
2) хрусталик
3) стекловидное тело
4) сетчатка
5) роговица

Читайте также:  Ангиопатия сетчатки обоих глаз у ребенка 3 месяца

3. Установите последовательность расположения структур глазного яблока, начиная с роговицы. Запишите соответствующую последовательность цифр.
1) нейроны сетчатки
2) стекловидное тело
3) зрачок в пигментной оболочке
4) светочувствительные клетки-палочки и колбочки
5) выпуклая прозрачная часть белочной оболочки

4. Установите последовательность прохождения сигналов по сенсорной зрительной системе. Запишите соответствующую последовательность цифр.
1) зрительный нерв
2) сетчатка
3) стекловидное тело
4) хрусталик
5) роговица
6) зрительная зона коры мозга

5. Установите последовательность процессов прохождения луча света через орган зрения и нервного импульса в зрительном анализаторе. Запишите соответствующую последовательность цифр.
1) преобразование луча света в нервный импульс в сетчатке
2) анализ информации
3) преломление и фокусирование луча света хрусталиком
4) передача нервного импульса по зрительному нерву
5) прохождение лучей света через роговицу

ОПТИЧЕСКАЯ
1. Выберите три правильных варианта: к светопреломляющим структурам глаза относятся:

1) роговица
2) зрачок
3) хрусталик
4) стекловидное тело
5) сетчатка
6) жёлтое пятно

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Оптическая система глаза состоит из
1) хрусталика
2) стекловидного тела
3) зрительного нерва
4) жёлтого пятна сетчатки
5) роговицы
6) белочной оболочки

ОПТИЧЕСКАЯ — РЕЦЕПТОРНАЯ
Установите соответствие между структурой глаза человека и его функцией: 1) оптическая, 2) рецепторная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.

А) зрачок
Б) желтое пятно
В) палочки и колбочки
Г) хрусталик
Д) стекловидное тело
Е) сетчатка

1. Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите цифры, под которыми они указаны.
1) роговица
2) стекловидное тело
3) радужная оболочка
4) зрительный нерв
5) хрусталик
6) сетчатка

2. Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите цифры, под которыми они указаны.
1) радужка
2) роговица
3) стекловидное тело
4) хрусталик
5) сетчатка
6) зрительный нерв

3. Выберите три верно обозначенные подписи к рисунку, на котором изображено внутреннее строение органа зрения. Запишите цифры, под которыми они указаны.
1) зрачок
2) сетчатка
3) фоторецепторы
4) хрусталик
5) склера
6) желтое пятно

4. Выберите три верно обозначенные подписи к рисунку, на котором изображено строение глаза человека. Запишите цифры, под которыми они указаны.
1) сетчатка
2) слепое пятно
3) стекловидное тело
4) склера
5) зрачок
6) роговица

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Отличия дневного зрения человека по сравнению с сумеречным состоят в том, что
1) работают колбочки
2) различение цветов не осуществляется
3) острота зрения низкая
4) работают палочки
5) различение цветов осуществляется
6) острота зрения высокая

© Д.В.Поздняков, 2009-2019

Источник

С одной стороны нам говорят, что ультрафиолет мы не видим, с другой стороны, мы видим, как в ультрафиолете светятся некоторые цвета и на купюрах проявляются защитные знаки. Так как же на самом деле?

Купюра, находящаяся в детекторе валют

Эта статья будет из двух частей:

1️⃣ для начала мы проясним присущие ультрафиолету проявления и его природу,

2️⃣ во второй части непосредственно поговорим о том, можно ли его видеть и при каких условиях.

Канадский паспорт в ультрафиолете

Взгляните вокруг. Что вы видите? Все эти цвета, стены, окна, все кажется очевидным, как будто так и должно быть здесь. Мысль о том, что мы все это видим благодаря частицам света (фотонам), которые отскакивают от объектов и попадают нам в глаза, кажется невероятной.

Этот поток фотонов принимается, примерно 126 миллионами светочувствительных клеток. Различные направления и энергии фотонов транслируются в наш мозг в разных формах, цветах, яркости и контрасте, где и создаётся полноцветное изображение того, что мы видим.

Если мы взглянем на весь спектр электро-магнитных волн (к которым относится и свет), то увидим, что видимый свет занимает лишь небольшую его часть. Наши глаза могут прекрасно видеть и ощущать видимый свет, однако диапазон света намного более широк, включая ультрафиолетовый и инфракрасный свет.

Ширина всего спектра электро-магнитных излучений

Почему мы видим фиолетовый, а не коричневый, зависит от энергии, или длины волн фотонов, падающих на сетчатку глаза. Там находится два типа фоторецепторов, палочки и колбочки. Колбочки отвечают за цвет, а палочки позволяют нам видеть оттенки серого в условиях низкой освещенности, например, ночью.

Над нашим видимым спектром, на более коротких длинах волн, мы находим ультрафиолетовый спектр, потом рентгеновские лучи и на вершине – гамма-лучевой спектр, длины волн которого достигают одной триллионной метра.

УФ излучение делится на 3 класса (по длине волны): A, B и C.
???? Ближний (длинноволновый) ультрафиолет, УФ-A лучи (UVA, 315—400 нм) LW
???? Средний (средние волны)  ультрафиолет, УФ-B лучи (UVB, 280—315 нм) MV
???? Дальний (коротковолновый) ультрафиолет, УФ-C лучи (UVC, 100—280 нм) SV

Спектр излучений света (видимого и невидимого невооружённым глазом)

Читайте также:  Операция лазером на сетчатке при беременности

Опсины, или пигментные молекулы, в клетках сетчатки поглощают электромагнитную энергию падающих фотонов, генерируя электрический сигнал, который идет к мозгу, где и рождается сознательное восприятие цвета и изображения.

У обычного, нормального человека, существует три типа колбочек и соответствующих опсинов, каждый из которых чувствителен к фотонам определенной длины волны. Эти колбочки обозначаются буквами S, M и L (короткие, средние и длинные волны соответственно). Короткие волны мы воспринимаем синими, длинные — красными.

Светочувствительные клетки сетчатки (палочки и колбочки)

Из всех возможных длин волн фотона наши колбочки хорошо обнаруживают небольшую полосу от 380 до 720 нанометров – то, что мы называем видимым спектром. За пределами нашего спектра восприятия есть инфракрасный, ультрафиолетовый и радиоспектр.

Как и везде, есть исключения. Существуют люди с четырьмя типами колбочек, которые видят гораздо больше цветов.

Ультрафиолетовое излучение невидимо для наших глаз

Дело в том, что роговица и хрусталик блокируют ультрафиолетовый свет, поэтому без него люди могут видеть за пределами видимого спектра и воспринимать длины волн до 300 нанометров в голубоватом оттенке.

У детей хрусталик пропускает больше ультрафиолета: если у 30-летнего человека – около 10% УФ-излучения достигает сетчатки, то у 10-летнего ребенка – до 75% ультрафиолета класса А проникает через хрусталик.

Как бы мы видели, если бы воспринимали ультрафиолетовые лучи

Справа – обычное изображение, слева – с добавлением ультрафиолетовой части света

Мягкий ближний ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет.

Если бы мы видели в разных спектрах ультрафиолета

Совершенно очевидно, что в тёмное время суток мы бы видели гораздо больше. Поздний закат, когда небо становится чернильно-синим, мы бы видели примерно так:

Но как же тогда мы видим при облучении предметов и людей ультрафиолетовыми лампами?

Дело в том, что в данном случае, мы наблюдаем не что иное, как эффект флуоресценции.

Флуоресценция – частный случай люминесценции, вызванной ультрафиолетовым излучением. Люминесценция — это «холодный свет», эмиссия которого происходит при нормальных и низких температурах. В люминесценции, некий источник энергии вышибает электрон из атома из самого низкого «основного» состояния энергии в «возбужденное» состояние более высокой энергии ; затем электрон возвращает энергию в виде света, за счет чего он возвращается к своему «основному» состоянию. За некоторыми исключениями, энергия возбуждения всегда больше, чем энергия (длина волны, цвет) излучаемого света. (Затрат больше, чем отдачи).

Свет — форма энергии. Для того, чтобы создать свет, необходимо превратить в него какую-либо иную форму энергии. Это можно осуществит двумя основными способами: нагреванием и люминесценцией.

Если нагреть что-то до достаточно высокой температуры, оно начнет светиться. Когда вольфрамовая нить обычной лампы накаливания нагревается, она светится. По тому же принципу излучают свет звёзды и галактики.

Люминесценция — это «холодный свет», эмиссия которого происходит при нормальных температурах. В люминесценции, один источник энергии вышибает электрон из атома некого специального вещества, переводя его в «возбужденное» состояние с более высокой энергией и данное вещество испускает энергию в виде света. Длина волны света, излучаемого наружу, всегда будет больше или равна той длине волны света, которым освещали объект. Данный эффект называется также «Стоксов сдвиг».

Если посветить ультрафиолетом на стену, окрашенную белой краской определенного вида, белая краска не будет светиться. Но если мы возьмём лист белой бумаги, то мы увидим очень яркое голубое свечение, потому что это иной материал, имеющий другие свойства.

В зависимости от свойств материала, он может флуоресцировать различными цветами при воздействии ультрафиолета. Очень хорошо разница в свечении материалов просматривается во флуоресценции минералов. Они могут переливаться причудливым образом, причём абсолютно разными цветами.

Некоторые виды пластмасс, черные под видимым светом, флуоресцируют оранжевым под УФ-светом.

Силикон и различные виды пластмасс в различном спектре УФ-света

Для создания флуоресценции, используют несколько видов УФ-ламп: UV-A (с длиной волны 315-400nm, например лампа чёрного света, или лампа Вуда), УФ-В (280-315nm) и UV-C (100-280nm). UV-C обычно используется для уничтожения микроорганизмов, и нахождение рядом с источником УФ-С света может привести к повреждению глаз и кожи, чем от УФ-В или UV-A, особенно, если это лампа высокой мощности.

Освещение производится лампой Вуда

Воздействие ультрафиолета на человека

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. Ультрафиолетовые лучи усиливают работу кроветворных органов, эндотелиальную систему, улучшает трофику тканей и барьерные свойства кожного покрова, устраняют аллергию. Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется витамин D.

Читайте также:  Отек в глазе отслоение сетчатки

В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи слабо достигают поверхности Земли. Длительная работа в помещениях и недостаток естественного света в демисезонный период приводят к световому голоданию. Световому голоданию способствует и оконное стекло, которое поглощает 90…95% ультрафиолетовых лучей.

Если вы не находитесь высоко в горах, не штурмуете снежную равнину и не лежите дни напролёт на залитом солнцем пляже, – не слушайте рекламу, заставляющую надевать солнцезащитные очки! Это может привести только к ослаблению зрения. Читайте отдельную статью об этом: Так ли полезны солнцезащитные очки

Фёдор Симонов, инструктор по профилактике и восстановлению здорового зрения, автор системы естественного восстановления зрения, Project в СоюзГеоСервис, выпускник президентской программы

Источник

Свет проникает в глаз через
роговицу
и проходит через последовательно расположенные прозрачные жидкости и
структуры:
роговицу
,
водянистую влагу
,
хрусталик
и
стекловидное тело
. Их совокупность называется
диоптрическим аппаратом
. В нормальных условиях происходит рефракция (преломление) лучей света от
зрительной мишени роговицей и хрусталиком, гак что лучи фокусируются на
сетчатке
. Преломляющая сила роговицы (основного рефракционного элемента глаза)
равна 43
диоптриям
. Выпуклость хрусталика может изменяться, и его преломляющая сила
варьируется между 13 и 26 диоптриями. Благодаря этому хрусталик
обеспечивает аккомодацию глазного яблока к объектам, находящимся на близком
или далеком расстоянии. Когда, например, лучи света от удаленного объекта
входят в нормальный глаз (с расслабленной цилиарной мышцей), мишень
оказывается на сетчатке в фокусе. Если же глаз направлен па ближний объект,
они фокусируются позади сетчатки (т.е. изображение на ней расплывается),
пока не произойдет аккомодация. Цилиарная мышца сокращается, ослабляя
натяжение волокон пояска; кривизна хрусталика увеличивается, и в результате
изображение фокусируется па сетчатке.

Роговица и хрусталик вместе составляют выпуклую линзу. Лучи света от
объекта проходят через узловую точку линзы и образуют па сетчатке
перевернутое изображение, как в фотоаппарате. Сетчатку можно сравнить с
фотопленкой, поскольку обе они фиксируют зрительные изображения. Однако
сетчатка устроена гораздо сложнее. Она обрабатывает непрерывную
последовательность изображений, а также посылает в мозг сообщения о
перемещениях зрительных объектов, угрожающих признаках, периодической смене
света и темноты и другие зрительные данные о внешней среде.

Хотя оптическая ось человеческого глаза проходит через узловую точку
хрусталика и точку сетчатки между
центральной ямкой
и
диском зрительного нерва
(
рис. 35.2
), глазодвигательная система ориентирует глазное яблоко на участок
объекта, называемый точкой фиксации. От этой точки луч света идет через
узловую точку и фокусируется в центральной ямке; таким образом, он проходит
вдоль зрительной оси. Лучи от остальных участков объекта фокусируются в
области сетчатки вокруг центральной ямки (
рис. 35.5
).

Фокусирование лучей на сетчатке зависит не только от хрусталика, но и от

радужки
. Радужка выполняет роль диафрагмы фотоаппарата и регулирует не только
количество света, поступающего в глаз, но, что еще важнее, глубину
зрительного поля и сферическую аберрацию хрусталика. При уменьшении
диаметра зрачка глубина зрительного поля возрастает и лучи света
направляются через центральную часть зрачка, где сферическая аберрация
минимальна. Изменения диаметра зрачка происходят автоматически (т.е.
рефлекторно) при
настройке (аккомодации) глаза
на рассматривание близких предметов. Следовательно, во время чтения или
другой деятельности глаз, связанной с различением мелких объектов, качество
изображения улучшается с помощью оптической системы глаза.

На качество изображения влияет еще один фактор — рассеивание света. Оно
минимизируется путем ограничения пучка света, а также его поглощения
пигментом сосудистой оболочки и пигментным слоем сетчатки. В этом отношении
глаз снова напоминает фотоаппарат. Там рассеивание света тоже
предотвращается посредством ограничения пучка лучей и его поглощения черной
краской, покрывающей внутреннюю поверхность камеры.

Фокусирование изображения нарушается, если размер зрачка не соответствует
преломляющей силе диоптрического аппарата. При
миопии (близорукости)
изображения удаленных объектов фокусируются перед сетчаткой, не доходя до
нее (
рис. 35.6
). Дефект корректируется с помощью вогнутых линз. И наоборот, при
гиперметропии (дальнозоркости)
изображения далеких предметов фокусируются позади сетчатки. Чтобы
устранить проблему, нужны выпуклые линзы (
рис. 35.6
). Правда, изображение можно временно сфокусировать за счет аккомодации,
но при этом утомляются цилиарные мышцы и глаза устают. При
астигматизме
возникает асимметрия между радиусами кривизны поверхностей роговицы или
хрусталика (а иногда сетчатки) в разных плоскостях. Для коррекции
используются линзы со специально подобранными радиусами кривизны.

Упругость хрусталика с возрастом постепенно снижается. Падает
эффективность его аккомодации при рассматривании близких предметов (
пресбиопия
). В молодом возрасте преломляющая сила хрусталика может меняться в
широком диапазоне, вплоть до 14 диоптрий. К 40 годам этот диапазон
уменьшается вдвое, а после 50 лет — до 2 диоптрий и ниже. Пресбиопия
корректируется выпуклыми линзами.

Ссылки:

  • ЗРИТЕЛЬНАЯ СИСТЕМА

Источник