Изменение роговицы при глаукоме
Петров С.А., Тезелашвили Т.Н., Рухлова С.А., Клиндюк Т.С.
ГОУ ВПО «Тюменская государственная медицинская академия Минздравсоцразвития РФ», г. Тюмень
По мнению А. П. Нестерова (2008), этиологическая и патогенетическая цепь первичной глаукомы складывается из нескольких звеньев: 1) генетические факторы, 2) изменения общего характера, 3) первичные местные функциональные и дистрофические изменения, 4) нарушения гидростатики и гидродинамики глаза, 5) повышение ВГД, 6) вторичные сосудистые расстройства, дистрофия и дегенерация тканей.
B. Tengroth, T. Ammitzboll, изучая состав коллагена в трабекулярной ткани, решетчатой пластине и склере здоровых глаз больных глаукомой и с подозрением на нее, выявили различия в содержании в нем гидроксипролина, пролина, гидроксилизина — свидетельство наличия первичных дистрофических изменений в молекулах коллагена в заднем отрезке глазного яблока. Избыточное рубцевание после антиглаукомных операций показывает наличие местных трофических изменений в переднем отрезке глаза [Добрица Т. А., 1988; Захаров И. А., 1988; Краморенко Ю. С., 1992; Журавлева А. Н., 2007].
В. В. Волков (2001) среди причин развития дистрофических процессов при глаукоме важную роль уделяет апоптозу (атрофии) различных клеток глаза. В литературе приводятся некоторые факторы индукции апоптоза при глаукоме: повышение внутриглазного давления [Minckler D. S., Bunt A. H ., 1977], уменьшение доставки к телу ганглиозной клетки сетчатки нейротрофических факторов [GarciaValenzuela E., Shareef S., Walsh J., 1995]. Апоптоз в этом случае идентифицирован по следующим специфическим признакам: конденсации хроматина, дроблению геномной ДНК, обнаружению апоптозных телец [Quigley H . A., 1995; Negoescu A. Et al., 1998].
Безусловно, дистрофические процессы структур глазного яблока играют важную роль в формировании слепоты и инвалидизации от этого заболевания. При этом вопросам дистрофических изменений роговицы при глаукоме практически не уделяется никакого внимания. Решение данного вопроса позволит изучить новые аспекты патогенеза первичной глаукомы и расширят возможности для диагностики, профилактики и лечения этого заболевания.
Цель — установление возможных дистрофических процессов переднего отрезка глазного яблока, в частности, эндотелия роговицы, при открытоугольной глаукоме (ОУГ).
Материал и методы. Обследовано 50 человек (97 глаз) с различными стадиями первичной глаукомы в возрасте от 38 до 82 лет, в том числе мужчины составили 20 %, женщины — 80 %. Контрольная группа составила 12 человек (24 глаза). Офтальмологические методы исследования включали в себя клиническо-анамнестическое обследование, визометрию, периметрию, биомикроскопию, офтальмоскопию, рефрактометрию, определение цветоощущения, тонометрию, тонографию, гониоскопию. Для исследования количества эндотелиальных клеток, их плотности и размеров, толщины роговицы использовался метод зеркальной микроскопии с помощью эндотелиального микроскопа EM-3000 (Tomey, Япония), который позволяет проводить прижизненное исследование эндотелия роговицы. При этом пределяли форму и расположение эндотелиальных клеток. Количественный метод позволяет установить число клеток на единицу площади.
Всех обследованных пациентов мы разделили на две группы: лица с клинические признаками вторичных иммунодефицитных состояний (ВИДС) — 9 чел. (18 %); лица без клинических проявлений ВИДС — 41 чел. (82 %).
Статистическая обработка полученных результатов проводилась на ПЭВМ IBM/РС при помощи стандартных статистических пакетов «SPSS 11,5 for Windows» (среднее значение, дисперсия средних, непараметрическое сравнение по критерию Стьюдента, коэффициента корреляций Спирмена с определением коэффициентов ранговой корреляции, частотный анализ, многофакторный регрессивный анализ).
Результаты и обсуждение. Установлено, что морфофункциональное состояние иммунной системы оказывает существенное влияние на состояние периферического зрения у пациентов с глаукомой, т. е. изменяет способность ориентироваться в пространстве (рис. 1).
Так, в группе лиц с клиническими признаками ВИДС достоверно чаще встречается сужение полей зрения с височной и нижневисочной стороны, а в группе больных с первичной глаукомой без клинических признаков ВИДС — с носовой стороны. Последнее является общеизвестным фактом при глаукоме.
При этом у больных с ОУГ наблюдаются признаки, указывающие на наличие дистрофических процессов клеток эндотелия роговицы (табл.).
Это выражается в уменьшении плотности эндотелиальных клеток в 1мм² (cd/mm²: 2295,6±67,1 по сравнению с 2868,1±34,92 — в контроле). При этом средний размер анализируемых клеток был достоверно больше (avg/um²: 447,82±14,45 по сравнению с 349,83±4,13 — в контроле). Кроме этого, коэффициент вариации (cv) анализируемых эндотелиальных клеток, определяемый делением стандартного отклонения (sd) на средний размер (avg/um²), также был значительно больше (52,63±3,92 по сравнению с 40,25±0,97 — в контроле). При наличии признаков ВИДС у лиц с ОУГ наблюдается значимое уменьшение как размеров самой большой эндотелиальной клетки (max/um²: 1051,5±52,94 по сравнению с 1271,13±74,14 при p<0,05), так и самой маленькой (min/um²: 115,5±5,25 по сравнению с 142,26±6,61 при p<0,01).
На рисунке 2 показано распределение размеров (Area) и формы (Apex) эндотелиальных клеток у пациентов с диагнозом ОУГ.
Как видно из представленного рисунка, у пациентов с глаукомой наблюдается выраженный полиморфизм и плеоморфизм эндотелиальных клеток. При этом их средний размер преимущественно (71,75 %) составляет от 200 до 600 μm2, а по форме преобладают 5- и 6-угольные клетки (29,28±2,22 % и 32,28±2,6 % соответственно). Проведенный корреляционный анализ показал, что увеличение числа клеток, имеющих размер 400–500 μm2, сопряжено с увеличением внутриглазного давления (КК=0,58 при p<0,05).
Выводы. Открытоугольная глаукома сопровождается развитием дистрофических процессов не только заднего отдела глазного яблока (зрительного нерва и сетчатки), но и роговой оболочки — уменьшается количество эндотелиальных клеток, развивается выраженный полиморфизм и плеоморфизм, что прямо пропорционально коррелирует с повышением внутриглазного давления. Выраженность дистрофических изменений структур глаза зависит от морфофункционального состояния иммунной системы.
Источник
В статье приведены результаты исследования морфологических изменений при глаукоме на фоне повышенного ВГД и при длительной гипотензивной терапии по результатам конфокальной микроскопии роговицы
Глаукома – это хроническое заболевание, одним из главных симптомов которого является повышение ВГД. Повышенный уровень ВГД при глаукоме является также важнейшим патогенетическим фактором развития глаукомной оптической нейропатии, что определяет необходимость лечебных мероприятий с целью достижения гипотензивного эффекта. Лечение пациентов, как правило, начинается с медикаментозной терапии [1].
Существует определенный диапазон значений ВГД, индивидуальный для каждого пациента, в пределах которого колебания ВГД не приводят к снижению зрительных функций [2, 3]. Для поддержания ВГД на безопасном для каждого конкретного пациента уровне требуется постоянное применение антиглаукомных гипотензивных препаратов на протяжении многих лет и в ряде случаев – в течение всей жизни.
Однако антиглаукомные препараты за небольшим исключением содержат в своем составе консерванты, причем наиболее часто используемым из них является бензалкония хлорид (БАХ). Это высокоэффективный консервант, который обладает способностью растворять стенки бактерий, благодаря чему в низких концентрациях (от 0,004 до 0,025%) широко используется в составе различных глазных капель. Однако действие БАХ является недостаточно специфичным. БАХ является катионным детергентом, поверхностно активным веществом (ПАВ), обладает способностью снижать поверхностное натяжение на границе водной и жировой фаз, что дает возможность четко разделенным фазам «проникать» друг в друга, т. е. растворяться. С липидами, белками, каротиноидами и другими нерастворимыми в воде веществами детергенты образуют смешанные мицеллы, способствуя тем самым переходу этих веществ в раствор. Данный механизм объясняет непосредственное разрушающее действие БАХ на липидный слой слезной пленки, вследствие чего нарушается ее структура, увеличивается испарение ее водной составляющей, снижается ее стабильность [5]. Дестабилизация слезной пленки ведет к нарушению смачиваемости глазной поверхности и снижению ее роли как фактора защиты от воздействия консерванта.
Консервант оказывает также прямое повреждающее воздействие на эпителий глазной поверхности, разрушая плазмолемму, вызывая гибель клеток и нарушение барьерных функций переднего эпителия. Все это лежит в основе нежелательных побочных эффектов при длительном применении глазных капель [4].
Непосредственное токсическое воздействие БАХ на клетки эпителиального слоя глазной поверхности связано с его способностью связываться с белками клеточных мембран.
В результате этого взаимодействия мембранные белки переходят в раствор в виде комплексов с детергентом, в состав которых также входят связанные с белками молекулы липидов. При разрушении липидных комплексов клеточных мембран повышается их проницаемость, образуются дефекты, нарушается ионное равновесие. Возникают отек клеток, повреждение внутриклеточных структур, что может вести к их гибели [1, 6].
Воздействие БАХ не ограничивается зоной поверхностного слоя эпителия – он в значительной степени накапливается во всех слоях роговично-конъюнктивального эпителия и строме роговицы, в меньшей степени – в радужной оболочке, хрусталике, сосудистой оболочке и сетчатке глаза. Присутствие БАХ определялось в данных структурах в течение 1 нед. после его применения [7, 8]. Необходимо отметить и раздражающий эффект данного консерванта. Нередко он может быть причиной воспалительных и иммуно-аллергических реакций [9].
Негативный эффект воздействия БАХ на эпителий конъюнктивы проявляется и в снижении плотности бокаловидных клеток. Нарушение дифференцировки клеток переднего эпителия может привести к их полному исчезновению, следствием чего является недостаточность муцинового слоя слезной пленки [10].
Разрушение слезной пленки в совокупности с цитотоксическим действием консерванта и нарушением структуры эпителиального слоя глазной поверхности обычно протекает по типу синдрома «сухого глаза». Побочные эффекты, связанные с длительным применением антиглаукомных препаратов, могут приводить к ухудшению их переносимости и потенциально снизить гипотензивный эффект лечения.
Регистрация изменений глазной поверхности, возникающих под воздействием консервантов антиглаукомных препаратов, важна и необходима для оценки степени морфологических нарушений, уточнения причин появления субъективного и зрительного дискомфорта, а также для оценки эффективности лечебных мероприятий. Контроль состояния глазной поверхности возможен с помощью метода конфокальной микроскопии. Данный метод прижизненной микроскопии роговицы обеспечивает визуализацию всех ее слоев и выявление характерных изменений при различных заболеваниях и воздействии различных неблагоприятных факторов [11–13]. Однако вариантов течения заболевания и медикаментозного режима при глаукоме достаточно много, кроме того, на результаты конфокальной микроскопии могут влиять возрастные изменения.
Для объективной оценки морфологических изменений под воздействием антиглаукомных препаратов на первом этапе исследований необходимо выявить исходное состояние всех слоев роговицы до назначения гипотензивной терапии.
Цель работы: с помощью метода конфокальной микроскопии оценить морфологические изменения роговицы до назначения гипотензивной терапии на фоне повышенного ВГД и при его компенсации на фоне длительного применения антиглаукомных препаратов.
Материал и методы
Было обследовано 42 (84 глаза) пациента с глаукомой, возраст больных – от 52 до 74 лет. Пациенты были разделены на 2 группы: 1-я включала 20 первичных больных (40 глаз), которые не использовали антиглаукомные препараты. 2-ю группу составили 22 пациента (44 глаза) с различным стажем (от 2 мес. до 17 лет) использования антиглаукомных препаратов, содержащих БАХ.
Исследование было выполнено на конфокальном микроскопе Confoscan-4 фирмы Nidek (Япония).
Результаты и обсуждение
На основе анализа результатов конфокальной микроскопии были выявлены характерные морфологические изменения в слоях роговицы при первичном обследовании пациентов с первичной открытоугольной глаукомой на фоне повышенного ВГД и после длительной гипотензивной терапии препаратами, содержащими БАХ. В регистрируемых изменениях роговицы прослеживается определенная закономерность. При обследовании пациентов с первично выявленной глаукомой (без медикаментозного режима) было выявлено, что основные изменения, определяемые при конфокальной микроскопии роговицы, локализуются в средних и задних слоях стромы (рис. 1).
Эпителий остается достаточно сохранным, в ряде случаев отмечали небольшую эпителиопатию. Практически неизменной оставалась и архитектоника субэпителиального нервного сплетения.
Изменения в передней строме – незначительные и непостоянные. Может наблюдаться умеренное снижение прозрачности межклеточного матрикса. Границы ядер кератоцитов остаются четкими, степень их рефлективности – в пределах нормы. Изменения стромы нарастают по направлению к ее средним слоям. В средних слоях регистрируются явные признаки отека: диффузное снижение прозрачности межклеточного матрикса, в результате чего границы клеточных структур становятся размытыми, нечеткими.
В задней строме, особенно в зоне, прилежащей к десцеметовой мембране, наблюдаются изменения в виде характерного свечения – проявление эффекта отражения света от слоя эндотелия. Согласно законам оптики, повышенный световой рефлекс от более оптически плотного слоя эндотелия проявляется светорассеиванием в предлежащих слоях стромы роговицы. Повышению уровня светорассеивания способствует отек межуточного вещества в средних и задних слоях стромы роговицы вследствие нарушения водного баланса.
Изменения со стороны эндотелия незначительны, плотность клеток соответствовала возрастной норме. Можно отметить умеренно выраженные явления поли- и плеоморфизма и полимегатизма. В 56% случаев были выявлены локальные изменения в виде расширенных межклеточных контактов, контурирование ядер эндотелиоцитов, нарушение рельефа клеточного слоя и неравномерного светового рефлекса с поверхности клеточных мембран.
Таким образом, при глаукоме на фоне повышенного ВГД основные изменения были отмечены в средних и задних слоях стромы роговицы.
В данной работе были обследованы пациенты с различной длительностью глаукомного процесса с целью оценки степени морфологических нарушений и их зависимости от стажа заболевания и использования антиглаукомных средств.
Обследование пациентов на фоне длительного медикаментозного режима при компенсированном ВГД выявило также определенную закономерность с максимальными изменениями морфологической картины эпителия и передних слоев стромы (рис. 2, выделено красным).
Морфологические нарушения со стороны эпителия роговицы выражены в различной степени в зависимости от длительности применения антиглаукомных препаратов. Нарушены структура, ход и взаиморасположение нервов субэпителиального нервного сплетения.
Максимальные изменения можно наблюдать в передних слоях стромы роговицы, видны явные нарушения структуры, уменьшается количество кератоцитов, происходит резкое снижение прозрачности вещества роговицы. Состояние же средней и задней стромы по сравнению с микроскопической картиной, получаемой при некомпенсированном ВГД и отсутствии медикаментозного режима, на фоне использования гипотензивной терапии улучшается. Уменьшается световой рефлекс от слоя эндотелия, что свидетельствует о снижении степени светорассеивания в предлежащих слоях стромы, а значит, об уменьшении степени отека. Это свидетельствует о том, что на фоне медикаментозного режима происходит стабилизация метаболических процессов в роговице. Эндотелий остается достаточно сохранным, по данным конфокальной микроскопии претерпевает незначительные изменения, т. е. выдерживает и высокое давление, и длительный медикаментозный режим.
Со стороны эпителия роговицы наблюдали нарастание явлений эпителиопатии по мере увеличения длительности заболевания и медикаментозного режима.
В данной работе были обследованы пациенты с различной длительностью глаукомного процесса с целью оценки степени морфологических нарушений и их зависимости от стажа заболевания и использования антиглаукомных средств.
В результате применения медикаментозного режима в течение 2-х мес. при глаукоме эпителий претерпевает незначительные изменения, структура поверхностного слоя в целом сохранена, границы клеток различимы, ядра достаточно четкие. Через 1 год появляются характерный отек эпителиоцитов и нарушение межклеточных контактов. Через 5 лет может быть выявлен другой вариант эпителиопатии – поверхностный слой эпителия представлен слоем полиморфных клеток, ядра которых не визуализируются. Их строение не является характерным для данного слоя, а больше соответствует морфологии клеток промежуточных слоев эпителия.
Через 15 лет эпителиопатия проявлялась увеличением размера ядер и повышенной десквамацией клеток. Через 17 лет медикаментозного режима эпителий приобретает черты кератинизирующего эпителия с уплотненной поверхностной плазмолеммой и пониженной прозрачностью. Более выраженными становятся клеточный полиморфизм, расширение межклеточных контактов (рис. 3).
Изменения в передней строме роговицы также прогрессировали по мере увеличения стажа заболевания с применением гипотензивных препаратов. После 2-месячного медикаментозного режима можно отметить умеренную степень дезорганизации структуры стромы, но границы ядер кератоцитов оставались достаточно четкими, не было выраженного снижения прозрачности межуточного вещества. Через 1 год имеют место снижение четкости микроскопической картины, прозрачности межклеточного вещества, изменение пространственной ориентации, четкости очертаний и формы ядер кератоцитов. В дальнейшем происходило нарастание изменений в виде «гомогенизации» и потери клеточности стромы, результатом чего являлись резкое снижение прозрачности, прогрессирующее снижение количества визуализируемых ядер кератоцитов (рис. 4).
Таким образом, результаты исследований свидетельствуют о том, что при повышении ВГД нарушается водный баланс стромы роговицы, возникают морфологические нарушения с признаками хронического отека преимущественно задних и средних слоев стромы.
Проникновение жидкости в строму роговицы ограничено 2 структурными элементами: передним и задним эпителием, специфические функции которых обеспечивают ее водный баланс.
В соответствии со своей функцией в качестве барьера передний эпителий роговицы отличается наличием плотных межклеточных контактов, относительно низкой ионной проводимостью через его апикальные клеточные мембраны и высоким сопротивлением парацеллюлярному транспорту.
Плотные контакты (tight junction) между эпителиальными клетками образуют барьер, значительно ограничивающий поступление воды из слезной пленки в строму. Водный баланс обеспечивается эпителиальным транспортом ионов натрия и хлора. В естественных условиях важность этого транспорта в поддержании нормальной толщины и прозрачности роговицы минимальна по сравнению с таковым роговичного эндотелия, этот ток жидкости имеет большее значение для обеспечения эпителиального гомеостаза.
Эндотелий представляет собой барьер для проникновения жидкости в роговицу, однако этот барьер неполный (избирательный) – жидкость проникает в строму через слой эндотелия по межклеточным пространствам. Концепция же строго определенного уровня гидратации роговицы, определяющего ее прозрачность, представляет баланс между объемом поступающей в роговицу влаги, в т. ч. и через слой эндотелия, и функцией активного метаболического насоса. Функция метаболического насоса (эндотелиальных помп) обеспечивает активный транспорт ионов. При нормальном функционировании эндотелиальных помп поддерживается постоянное динамическое равновесие между притоком жидкости в строму через эндотелиальный барьер и поступлением воды обратно в переднюю камеру по градиенту осмотического давления [14, 15].
Таким образом, основным механизмом поддержания водного баланса роговицы является перемещение ионов и жидкости из роговицы в переднюю камеру глаза, что обеспечивает отток жидкости из задних слоев стромы и направление ее движения из передних слоев роговицы к ее задним отделам. При некомпенсированном ВГД гидростатическое давление водянистой влаги может создать препятствие для осуществления нормального тока жидкости из роговицы в переднюю камеру через слой эндотелия и усилить ток жидкости через неполный эндотелиальный барьер в роговицу. Одним из факторов накопления жидкости в строме роговицы может быть нарушение функции метаболического насоса в результате давления на клетки эндотелия, что может нарушать их специфические функции.
С учетом направления тока жидкости в строме роговицы от ее передних слоев к задним отделам вполне объяснимым является появление признаков хронического отека в средних и задних слоях при нарушении специфической функции эндотелия, обеспечивающей активный транспорт жидкости из роговицы в переднюю камеру, и гидростатическом сопротивлении влаги передней камеры.
При компенсации ВГД на фоне инстилляций гипотензивных антиглаукомных препаратов работа метаболического насоса нормализуется, что приводит к уменьшению признаков стромального отека в задних и средних слоях. Однако параллельно нарастают патологические изменения в эпителии и передних слоях стромы роговицы, что, по-видимому, связано с токсическим действием консервантов, являющихся составляющей частью медикаментозных средств, используемых при глаукоме.
Заключение
Таким образом, результаты исследований подтверждают необходимость снижения риска возникновения морфологических нарушений в роговице при глаукоме. Наряду со снижением ВГД необходимо минимизировать неблагоприятное воздействие консервирующих агентов. Идеальным является вариант использования бесконсервантных препаратов (Тафлотан, Santen). Возможно применение препаратов с более «мягким» консервантом (пурит, распадается на ионы натрия, хлора, кислород и воду) (Альфаган, Allergan Inc.). Одним из вариантов снижения токсического действия консерванта является введение в состав препарата дополнительных увлажняющих агентов (поливиниловый спирт) (Люксфен®, Bausch & Lomb). Существует еще один путь смягчения действия консерванта – назначение слезозаменителей и/или кератопротекторов дополнительно к медикаментозному режиму пациентов.
Источник