Искусственная сетчатка глаза википедия

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.

Запрос «Ретина» перенаправляется сюда; о названии особого вида ЖК-дисплеев см. Retina.

Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Строение[править | править код]

Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.

Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:

  • пигментного,
  • фотосенсорного,
  • наружной пограничной мембраны,
  • наружного зернистого слоя,
  • наружного сплетениевидного слоя,
  • внутреннего зернистого слоя,
  • внутреннего сплетениевидного слоя,
  • ганглионарных клеток,
  • слоя волокон зрительного нерва,
  • внутренней пограничной мембраны.

Строение сетчатки человека[править | править код]

Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.

Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.

Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.

диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.

На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.

Микроскопическое строение[править | править код]

Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено

См. Пигментный эпителий сетчатки

В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.

Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.

Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).

Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.

Читайте также:  Витаминные капли для сетчатки глаз

Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.

Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

Заболевания[править | править код]

Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:

  • Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
  • Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
  • Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
  • Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
  • Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
  • И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
  • Ретинобластома — злокачественная опухоль сетчатки.
  • Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
  • Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.

Литература[править | править код]

  • Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.

Примечание[править | править код]

Ссылки[править | править код]

  • Строение сетчатки. // Проект «Eyes for me».

Источник

Визуальный протез также известный как бионический глаз — это экспериментальное визуальное устройство, предназначенное для восстановления функции зрения у тех, кто страдает полной или частичной слепотой. Было разработано много устройств с применением технологий кохлеарных имплантатов и нейропротезирования. Идеи использования электрического тока (например, электростимуляции сетчатки) для восстановления зрения восходят к XVII веку. Их обсуждали Бенджамин Франклин, Тибериус Кавалло и Шарль Лерой.[1][2][3]

Биологические соображения[править | править код]

Возможность дать слепому человеку приобрести зрение при помощи бионического глаза зависит от обстоятельств, вызвавших потерю зрения. Протез сетчатки, является наиболее распространённым зрительным протезом. Для этого протеза лучше всего подходят пациенты с потерей зрения из-за дегенерации фоторецепторов. Шансы на успех увеличиваются, если зрительный нерв пациента был развит до появления слепоты. Люди с врождённой слепотой, могут не иметь полностью развитого зрительного нерва. Хотя нейропластичность позволяет нерву развиваться после установки имплантата.[4]

Технологические соображения[править | править код]

Визуальное протезирование разрабатывается как потенциально ценная помощь для людей с деградацией зрения. Argus II, разработанный совместно с Университетом Южной Калифорнии (USC) и производимый Second Sight Medical Products Inc., в настоящее время является единственным подобным устройством, получившим маркетинговое одобрение (знак CE в 2011 году).[5] Большинство других проектов находятся на стадии разработки.

Текущие проекты[править | править код]

Argus II[править | править код]

Марк Хумаюн, Юджин Дежуан, Говард Д. Филлипс, Вентай Лю и Роберт Гринбер были первыми изобретателями активного визуального протеза.[6] Они доказали работоспособность их концепции во время исследований с пациентами в Университете Джона Хопкинса. В конце 1990-х Гринберг вместе с предпринимателем по производству медицинского оборудования основал компанию Second Sight.[7] Их имплантат первого поколения имел 16 электродов и использовался в Университете Южной Калифорнии в период с 2002 по 2004 год.[8] В 2007 году компания начала испытание его 60-электродного имплантата второго поколения, получившего название Argus II.[9] В испытаниях приняло участие 30 человек из 4 стран. Весной 2011 года, на основании результатов клинического исследования, которые были опубликованы в 2012 году[10], Argus II был одобрен для коммерческого использования в Европе, и Second Sight запустил продукт в производство. В США Argus II был мертифицирован 14 февраля 2013 года. Национальный институт глаз, Министерство энергетики и Национальный научный фонд поддержали разработку Second Sight.[11]

Читайте также:  Сетчатке находятся палочки колбочки

Визуальный протез на основе микросистем (MIVP)[править | править код]

Клодом Вераарт из Университета Лувена разработал протез, который представляет собой электрод со спиральной манжетой вокруг зрительного нерва в задней части глаза. По задумке стимулятор должен получать сигналы от внешней камеры, которые преобразуются в электрические сигналы, и напрямую стимулировать зрительный нерв.

Имплантируемый миниатюрный телескоп[править | править код]

Имплантируемый миниатюрный телескоп, хотя он и не является активным протезом, выступает в роли одного из видов визуальных имплантатов, которые могут использоваться в лечении макулодистрофии на её последних стадиях.[12][13] Устройство такого типа имплантируется в глаз, увеличивая (примерно в три раза) размер изображения, проецируемого на сетчатку.[14]

Примером является телескоп, созданный VisionCare Ophthalmic Technologies. Он размером с горошину и имплантируется за радужную оболочку глаза. Изображение проецируются на здоровые участки центральной сетчатки, за пределами дегенерированной макулы и увеличивается, чтобы уменьшить влияние слепого пятна на зрение. Степень увеличения в 2,2 или 2,7 раза позволяет увидеть или различить объект, представляющий интерес, в то время как другой глаз используется для периферического зрения. Глаз, имеющий имплантат, в качестве побочного эффекта будет иметь ограниченное периферическое зрение. Пациентам, использующим устройство, все же могут понадобиться очки для оптимального зрения. Перед операцией пациенты должны сначала опробовать ручной телескоп, чтобы узнать, улучшит ли он зрение в их случае. Одним из основных недостатков является то, что он не может быть использован для пациентов, перенесших операцию по удалению катаракты. А также, чтобы установить телескоп требуется сделать большой разрез в роговице.[15]

Проект MPDA Alpha IMS[править | править код]

В 1995 году в Университетской глазной клинике Тюбингена началась разработка субретинальных протезов сетчатки. Под сетчатку укладывался чип с микрофотодиодами, который воспринимал свет и трансформировал в электрические сигналы, стимулирующие ганглионарные клетки наподобие естественного процесса в фоторецепторах неповреждённой сетчатки. Природные фоторецепторы гораздо эффективнее фотодиодов и видимый свет не достаточно мощный, чтобы стимулировать MPDA. Поэтому для повышения уровня стимуляции используется внешний источник питания. Первые эксперименты на микросвинках и кроликах были начаты в 2000 году, и только в 2009 году имплантаты были вживлены 11 пациентам в рамках клинического пилотного исследования. Первые результаты были обнадеживающими – большинство пациентов смогли отличать день от ночи, некоторые даже могли распознавать предметы – чашку, ложку, следить за перемещением крупных предметов.[16]
Первые имплантации в Великобритании состоялись в марте 2012 года и были проведены Робертом МакЛареном в Оксфордском университете и Тимом Джексоном в Королевской больнице Лондона.[17][18] На 2017 год Alpha IMS, производства Retina Implant AG Germany имела 1500 электродов, размер 3×3 мм, толщиной 70 микрон. После установки под сетчатку это позволяет почти всем пациентам получить некоторую степень восстановления светоощущения.[19]

MIT Retinal Implan[править | править код]

Джозеф Риццо и Джон Уайетт из Массачусета начали исследовать возможность создания протеза сетчатки в 1989 году, и провели испытания стимуляции на слепых добровольцах в период между 1998 и 2000 годами. С тех пор они разработали субретинальный стимулятор, набор электродов, который размещён под сетчаткой и принимает сигналы изображения от камеры, установленной на пару очков. Микросхема стимулятора декодирует информацию изображения, передаваемую камерой, и соответственно стимулирует ганглиозные клетки сетчатки. Протез второго поколения собирает данные и передаёт их имплантату через радиочастотные поля из катушки передатчиков, установленных на очках. Вторичная катушка приемника зашита вокруг радужки.[20]

Читайте также:  Что такое ретинопатия сетчатки глаза

Искусственная кремниевая сетчатка (ASR)[править | править код]

Братья Алан Чоу и Винсент Чоу разработали микрочип, содержащий 3500 фотодиодов, которые обнаруживают свет и преобразуют его в электрические импульсы. Они стимулируют здоровые ганглиозные клетки сетчатки . ASR не требует внешних устройств. Микрочип ASR — это кремниевый чип диаметром 2 мм (та же концепция, что и в компьютерных чипах), 25 микрон толщиной, содержащий 5000 микроскопических солнечных элементов под названием «микрофотодиоды», каждый из которых имеет свой собственный стимулирующий электрод.[21]

Фотоэлектрические протезы сетчатки (PRIMA)[править | править код]

Даниэль Паланкер и его группа в Стэнфордском университете разработали фотоэлектрическую систему, она же и есть «бионический глаз». Система включает в себя субретинальной фотодиод и инфракрасную проекционную систему изображения, установленную на видеоочки.[22] Информация с видеокамеры обрабатывается в карманном компьютере и отображается в импульсном инфракрасном (850-915 нм) видеоизображении. ИК-изображение проецируется на сетчатку через естественную оптику глаза и активирует фотодиоды в субретинальном имплантате, которые преобразуют свет в импульсный бифазный электрический ток в каждом пикселе.[23] Электрический ток, протекающий через ткань между активным и обратным электродами в каждом пикселе, стимулирует близлежащие внутренние нейроны сетчатки, в первую очередь, биполярные клетки, которые передают возбуждающие ответы клеткам ганглия сетчатки. Эта технология коммерциализируется компанией Pixium Vision и, по состоянию на 2018 год, проходит клинические испытания.

Bionic Vision[править | править код]

Австралийская команда во главе с профессором Энтони Беркиттом разрабатывает два протеза сетчатки. Устройство Wide-View объединяет новые технологии с материалами, которые были успешно использованы в других клинических имплантатах. Этот подход включает в себя микрочип с 98 стимулирующими электродами и направлен на повышение мобильности пациентов, чтобы помочь им безопасно перемещаться в своей среде. Этот имплантат будет помещён в супрахориоидальное пространство. Первые тесты пациентов с этим устройством начаты в 2013 году.

Консорциум Bionic Vision Australia разрабатывает устройство High-Acuity, которое включает в себя ряд новых технологий для объединения микрочипа и имплантата с 1024 электродами. Устройство призвано улучшить зрение, чтобы помочь с такими задачами, как распознавание лиц и чтение крупным шрифтом. Бионическая зрительная система включает в себя камеру, передающую радиосигналы микрочипу, расположенному в задней части глаза. Эти сигналы превращаются в электрические импульсы, стимулирующие клетки в сетчатке и зрительный нерв. Потом они передаются в зрительные зоны коры мозга и преобразуются в изображение, которое видит пациент.

Австралийский исследовательский совет присудил Bionic Vision Australia грант в размере 42 миллионов долларов США в декабре 2009 года, и консорциум был официально запущен в марте 2010 года.[24]

Dobelle Eye[править | править код]

Dobelle Eye по функциям аналогичен устройству MIT Retinal Implan, за исключением того, что чип-стимулятор находится в зрительной коре, а не на сетчатке. Первые впечатления от имплантата были неплохие. Ещё в стадии развития, после смерти Добеля, было решено превратить этот проект из коммерческого в проект, финансируемый государством.[25]

Интракортикальный зрительный протез[править | править код]

Лаборатория нейронных протезов из Иллинойского технологического института в Чикаго, разрабатывает визуальный протез, используя внутрикорковые электроды. Аналогично системе Добеля, применение внутрикорковых электродов позволяет значительно увеличить пространственное разрешение в сигналах стимуляции. Кроме того, разрабатывается система беспроводной телеметрии для устранения необходимости в транскраниальных (внутричерепных) проводах. Электроды, покрытые слоем активированной плёнки оксида иридия (AIROF), будут имплантированы в зрительной коре, расположенной в затылочной доле мозга.[26] Наружный блок будет захватывать картинку, обрабатывать её и генерировать инструкции, которые затем будут передаваться в имплантированные модули по телеметрическому линку. Схема декодирует инструкции и стимулирует электроды, в свою очередь стимулируя зрительную кору. Группа разрабатывает датчики внешней системы захвата и обработки изображений для сопровождения специализированных имплантируемых модулей, встроенных в систему. В настоящее время проводятся исследования на животных и психофизические исследования человека для проверки целесообразности имплантации добровольцам.[27]

См. также[править | править код]

  • Бионические контактные линзы

Примечания[править | править код]

Источник