Фотохимический процесс в сетчатке

В рецепторных клетках сетчатки – светочувствительные пигменты (сложные белковые вещества) – хромопротеиды, которые обесцвечиваются на свету.

В палочках на мембране наружных сегментов содержится родопсин, в колбочках – йодопсин.

Различаются тем, что максимум поглощения находится в различных областях спектра:

палочки – в области 500 нм;

– колбочки (3 вида, т.к. 3 типа зрительных пигментов) – в синей части спектра (430–470 нм); в зеленой (500–530 мн); в красной (620–750 мн).

Фотохимические процессы в сетчатке протекают весьма экономно.

Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%).

В темноте – ресинтез пигментов (с поглащением энергии). Восстановление йодопсина в 530 раз быстрее, чем родопсина.

При постоянном и равномерном освещении – равновесие между скоростью распада и ресинтеза пигментов.

Когда кол-во света ¯ – динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента à феномен темновой адаптации.

Куриная слепота – нарушение сумеречного зрения (в организме мало витамина А à процесс ресинтеза родопсина ослабевает).

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин.

Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его à четкость зрительного восприятия.

Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Фотохимические процессы в фоторецепторах глаза + действие света à рецепторный потенциал (гиперполяризация мембраны рецептора).

РП à активация др. рецепторов à деполяризация их мембран.

Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула (т.е. амплитуда зависит от воспринимаемого цвета, т.к. RGB – отличаются по длине волны = интенсивности (пр: R – в центре сетчатки; B – на периферии)).

Синаптические окончания фоторецепторов конвергируют (сходятся) на биполярные нейроны сетчатки. При этом фоторецепторы центральной ямки связаны только с одним биполяром.

45. Механизм аккомодации. Возрастные изменения аккомодации.

Аккомодация глаза — способность ясно видеть предметы, находящиеся на различных расстояниях от глаза. Физиологический механизм аккомодации глаза состоит в том, что при сокращении волокон цилиарной мышцы глаза происходит расслабление цинновой связки, при помощи которой хрусталик прикреплен к цилиарному телу (см. Глаз). При этом уменьшается натяжение сумки хрусталика, и он благодаря эластическим свойствам становится более выпуклым. Расслабление цилиарной мышцы ведет к уплощению хрусталика. На рис. 1 показана схема аккомодации глаза (сплошная линия — положение хрусталика в состоянии покоя, пунктирная — при аккомодации). Иннервация цилиарной мышцы осуществляется глазодвигательным и симпатическим нервами.

Аккомодация глаза возможна в пределах, ограниченных ближайшей и дальнейшей точками ясного зрения. Первая определяется наименьшим расстоянием, на котором возможно читать мелкий шрифт; вторая — наибольшим расстоянием, на котором ясно различим предмет при отсутствии аккомодации глаза. Положение дальнейшей точки ясного зрения зависит от рефракции глаза (см.). Увеличение преломляющей силы оптической системы глаза, достигаемое при максимальном напряжении аккомодации глаза, называют объемом, или силой, аккомодацией глаза.Объем аккомодации глаза изменяется с возрастом вследствие уменьшения эластичности хрусталика.

К патологическим изменениям относят спазм, паралич и парез аккомодации глаза. Спазм возникает обычно у молодых людей при длительном напряжении аккомодации глаза, травме, действии на глаз очень яркого света. Спазм аккомодации глаза проявляется близорукостью. Параличи и парезы аккомодации глаза могут быть центрального происхождения и обусловливаться инфекциями и интоксикациями. Периферические параличи аккомодации глаза наблюдают при ушибах глаза, приеме внутрь препаратов атропина, при закапывании в конъюнктивальный мешок средств, расширяющих зрачок. Паралич аккомодации глаза характеризуется невозможностью различать мелкий шрифт на близком расстоянии. Для лечения спазма и паралича аккомодации глаза больные подлежат направлению к врачу -окулисту.

46. Механизм рефракции. Аномалии рефракции.

Рефракция глаза (позднелат. refractio преломление) — преломляющая сила оптической системы глаза, выраженная в диоптриях.

Рефракция глаза как физическое явление определяется радиусом кривизны каждой преломляющей среды глаза, показателями преломления сред и расстоянием между их поверхностями, т.е. обусловлена анатомическими особенностями глаза. Однако в клинике имеет значение не абсолютная сила оптического (светопреломляющего) аппарата глаза, а ее соотношение с длиной переднезадней оси глаза, т.е. положение заднего главного фокуса (точка пересечения лучей, проходящих через оптическую систему глаза, параллельно его оптической оси) по отношению к сетчатке — клиническая рефракция.

При соответствии преломляющей силы глаза и длины его оси параллельные лучи света после преломления в глазу соединяются в фокусе на сетчатке. Такая клиническая рефракция называется эмметропия или соразмерная рефракция.

При миопии главный фокус оптической системы глаза располагается впереди сетчатки. Миопия имеет три степени: слабую – до-3 дпр, среднюю до –6, высокую – более –6дптр. Прогрессирующая миопия, достигающая высоких степеней –30 – злокачественная. Коррекция миопии осуществляется рассеивающими линзами.

Дата добавления: 2015-04-17; просмотров: 2754; Опубликованный материал нарушает авторские права? | Защита персональных данных

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9909 — | 7693 — или читать все…

Читайте также:

Источник

При действии света на сетчатку происходят химические изменения пигментов,
находящихся в наружных члениках палочек и колбочек. В результате
фотохимической реакции возникает возбуждение фоторецепторов
сетчатки.

В сетчатке глаз животных еще в конце 70-х годов прошлого столетия были
открыты светочувствительные пигменты и было показано, что эти вещества выцветают
на свету. В палочках сетчатки человека и многих животных содержится пигмент
родопсин, или зрительный пурпур, состав, свойства и химические превращения
которого подробно изучены в последние десятилетия (Уолд и др.). В колбочках птиц
найден пигмент йодопсин. По-видимому, в колбочках имеются еще и другие
светочувствительные пигменты. Раштон указывает на наличие в колбочках пигментов
— хлоролаба и эритролаба; первый из них поглощает лучи, соответствующие зеленой,
а  второй — красной части спектра.

Читайте также:  Газовая операция на сетчатке глаза

Родопсин представляет собой высокомолекулярное соединение, состоящее
из ретинена — альдегида витамина А— и белка опсина. При действии света
происходит цикл химических превращений этого вещества. Поглощая свет, ретинен
переходит в свой геометрический изомер, характеризующийся тем, что его боковая
цепь выпрямляется, что приводит к нарушению связи ретинена с белком. При этом
вначале образуются некоторые промежуточные вещества — люмпродопсин и
метародопсин, после чего ретинен отщепляется от опсина. Под влиянием фермента,
названного редуктазой ретинена, последний переходит в витамин А, который
поступает из наружных члеников палочек в клетки пигментного слоя.

При затемнении глаз происходит регенерация зрительного пурпура, т. е.
ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала
цис-изомер витамина А, из которого образуется ретинен. При отсутствии в
организме витамина А образование родопсина резко нарушается, что и приводит к
развитию упомянутой выше куриной слепоты. Образование ретинена из витамина А
представляет собой окислительный процесс, происходящий при участии ферментной
системы. В изолированной сетчатке млекопитающих животных, в которой нарушены
окислительные процессы, не происходит восстановления родопсина.

Фотохимические процессы в сетчатке происходят весьма
экономно, т. е. при действии даже очень яркого света расщепляется только
небольшая часть имеющегося в палочках родопсина. Так, по данным Уолда, при
действии света интенсивностью 100 люкс через 5 секунд расщепляется в каждой
палочке всего 1200 молекул зрительного пурпура из имеющихся в ней 18 млн.
молекул этого вещества, т. е. распадается около 0,005% родопсина.

Поглощение света родопсином и его расщепление различны в зависимости от длины
волны световых лучей, действующих на него. Родопсин, экстрагированный из
сетчатки глаза человека, обнаруживает максимальное поглощение под 
влиянием  световых  лучей с длиной волны около 500 мм к, которые лежат
в зеленой части спектра. Именно эти лучи кажутся наиболее яркими в темноте.
Сравнение кривой поглощения и обесцвечивания родопсина при действии света разной
длины волны с кривой субъективной оценки яркости света в темноте обнаруживает
полное их совпадение (рис. 215).

 

Если обработать сетчатку раствором квасцов, т. е. фиксировать её, то
это предохраняет родопсин от дальнейшего распада и на сетчатке можно
увидеть изображение предмета, на который перед этим смотре,л глаз (так
называемую оптограмму).

Структура йодопсина близка к родопсину. Йодопсин представлш собой также
соединение ретинена с белком опсином, который образует в колбочках и
отличается от опсина палочек. Поглощение света родопсином и йодопсином
различно. Йодопсин в наибольшей степени поглащает лучи света с длиной
волны около 560 ммк, лежащие в желтой час спектра.

Рис. 215. Сравнение чувствительности глаза человека, находящегося в
темноте, со спектром поглощения зрительного пурпура. Точками отмечена
чувствительность.

Источник

Зрительная сенсорная система служит для восприятия и анализа световых раздражений. Через нее человек получает до 80-90 % всей информации о внешней среде. Глаз человека воспринимает световые лучи лишь в видимой части спектра — в диапазоне от 400 до 800 нм.

Рецепторный аппарат

Рецепторный аппарат глаза представлен зрительной частью сетчатки, содержащей фоторецепторные клетки (высокодифференцированные нервные элементы), а также тела и аксоны нейронов (проводящие нервное раздражение клетки и нервные волокна), расположенных поверх сетчатки и соединяющиеся в слепом пятне в зрительный нерв.

Сетчатка также имеет слоистое строение. Устройство сетчатой оболочки чрезвычайно сложное. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-цветовоспринимающим, он обращен к сосудистой оболочке (вовнутрь) и состоит из нейроэпителиальных клеток — палочек и колбочек, воспринимающих свет и цвета, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами. У человека толщина сетчатки очень мала, на разных участках она составляет от 0,05 до 0,5 мм.

Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней (и задней) камеры, хрусталик и стекловидное тело, пройдя через всю толщу сетчатки, попадает на отростки светочувствительных клеток — палочек и колбочек. В них протекают фотохимические процессы, обеспечивающие цветовое зрение.

Областью наиболее высокого (чувствительного) зрения, центрального, в сетчатке является так называемое жёлтое пятно с центральной ямкой, содержащей только колбочки (здесь толщина сетчатки до 0,08—0,05 мм). В области желтого пятна сосредоточена также основная часть рецепторов, ответственных за цветовое зрение (цветоощущение). То есть вся световая информация, которая попадает на жёлтое пятно, передается в мозг наиболее полно. Место на сетчатке, где нет ни палочек, ни колбочек называется слепым пятном; оттуда зрительный нерв выходит на другую сторону сетчатки и далее в мозг.

Фотохимические процессы в сетчатке глаза.

В рецепторных клетках сетчатки – светочувствительные пигменты (сложные белковые вещества) – хромопротеиды, которые обесцвечиваются на свету.

В палочках на мембране наружных сегментов содержится родопсин, в колбочках – йодопсин.

Различаются тем, что максимум поглощения находится в различных областях спектра:

палочки – в области 500 нм;

– колбочки (3 вида, т.к. 3 типа зрительных пигментов) – в синей части спектра (430–470 нм); в зеленой (500–530 мн); в красной (620–750 мн).

Фотохимические процессы в сетчатке протекают весьма экономно.

Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%).

В темноте – ресинтез пигментов (с поглащением энергии). Восстановление йодопсина в 530 раз быстрее, чем родопсина.

При постоянном и равномерном освещении – равновесие между скоростью распада и ресинтеза пигментов.

Когда кол-во света ¯ – динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента àфеномен темновой адаптации.

Читайте также:  Патологии развития сетчатки глаза

Куриная слепота – нарушение сумеречного зрения (в организме мало витамина Аà процесс ресинтеза родопсина ослабевает).

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин.

Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его àчеткость зрительного восприятия.

Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Фотохимические процессы в фоторецепторах глаза + действие света àрецепторный потенциал (гиперполяризация мембраны рецептора).

РП à активация др. рецепторов à деполяризация их мембран.

Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула (т.е. амплитуда зависит от воспринимаемого цвета, т.к. RGB – отличаются по длине волны = интенсивности (пр: R – в центре сетчатки; B – на периферии)).

Синаптические окончания фоторецепторов конвергируют (сходятся) на биполярныенейроны сетчатки. При этом фоторецепторы центральной ямки связаны только с одним биполяром.

Слуховая сенсорная система. Звукоулавливающий и звукопроводящий аппарат. Рецепторный отдел слуховой сенсорной системы. Теории восприятия звуков (Г. Гельмгольц, Г. Бекеши).

Слуховая система — одна из важнейших сенсорных систем человека в связи с возникновением у него речи как средства межличностного общения. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд последовательных отделов, которых особенно много в слуховой системе.

Слуховой анализатор это механические структуры, рецепторные структуры и нервные структуры. Они воспринимают и анализируют звуковые колебания.
Рецепторный (периферический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа {орган Корти), находящимися в улитке. Слуховые рецепторы относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха.
Внутреннее ухо (звуковоспринимающий аппарат), а также среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.
Наружное ухо за счет ушной раковины обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.
Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой.

Теория слуха

Крупнейшим физиком и врачом Г. Гельмгольцем было проведено подробное исследование строения внутреннего уха и предложена так называемая резонансная теория слуха. Согласно этой теории волокна основной мембраны представляют набор из большого числа резонаторов, каждый из которых отзываемся на колебания определенной частоты и возбуждает соответственные нервные окончания слухового нерва. Дальнейшие исследования показали, что волокна основной мембраны связаны между собой, и, кроме того, будучи погружены в жидкость, имеют большое затухание, так что их отдельные резонансные колебания практически невозможны.
Модель возбуждения основной мембраны как целой натянутой гибкой перепонки, окруженной каналами с жидкостью, была рассмотрена Г. Бекеши (1948 г.), который показал, что на такой мембране в зависимости от частоты колебаний, сообщаемых одному из каналов в его начале, образуется в определенном месте область с колебаниями большой амплитуды. Эта область тем ближе к месту возбуждения, чем выше частота. Опытами Бекеши было доказано, что от частоты воспринимаемого звука зависит, какая группа волокон будет возбуждена в кортиевом органе. Число волоско-вых клеток органа Корти составляет 24 000, а число нервных волокон, отходящих от них — 3000. Таким образом, число различных типов раздражений, производимых звуками в слуховом органе, очень велико. Благодаря этому ухо человека позволяет ему различать весьма тонкие особенности в звуках по их силе, частоте и спектральному составу.



Источник

Фотохимические процессы в сетчатке связанные с преобразованием ряда веществ на свете или в темноте. Как упоминалось выше, в наружных сегментах рецепторных клеток содержатся пигменты. Пигменты — вещества, поглощающие определенную часть лучей света и отражают остальные лучей. Поглощение лучей света происходит группой хромофоров, которые содержатся в зрительных пигментов. Такую роль выполняют альдегиды спиртов витамина А.

Зрительный пигмент колбочек, йодопсин ( jodos — фиолетовый) состоит из белка фотопсину (photos — свет) и 11-цис-ретиналя, пигмент палочек — родопсин ( rodos — пурпурный) — с белка скотопсина ( scotos — тьма) и также 11-цис ретиналя. Таким образом, отличие пигментов рецепторных клеток заключается в особенностях белковой части. Подробнее изучены процессы, которые происходят в палочках,

Схема строения колбочек и палочек

Рис. 12.10. Схема строения колбочек и палочек

поэтому последующий анализ будет касаться именно их.

Фотохимические процессы, происходящие в палочках на свете

Под влиянием кванта света, поглощенного родопсином, происходит фотоизомеризации хромофорной части родопсина. Этот процесс сводится к изменению формы молекулы, согнутая молекула 11-цис-ретиналя превращается в выпрямленную молекулу полностью-транс-ретиналя. Начинается процесс отсоединения скотопсина. Молекула пигмента обесцвечивается. На этой стадии заканчивается обесцвечивание пигмента родопсина. Обесцвечивания одной молекулы способствует закрытию 1000000 пор (Na + -каналов) (Хьюбел).

Фотохимические процессы, происходящие в палочках в темноте

Первая стадия — ресинтез родопсина — переход полностью-транс-ретиналя в 11-цис-ретиналь. Для осуществления этого процесса необходима метаболическая энергия и фермент ретинальизомераза. Как только образуется 11-цис-ретиналь, он соединяется с белком скотопсина, что приводит к образованию родопсина. Эта форма родопсина стабильная к действию следующего кванта света (рис. 12.11). Часть родопсина подлежит прямой регенерации, часть ретиналю1 при наличии НАДН восстанавливается энзимом алкогольдегидрогеназой к витамину A1, который, соответственно, взаимодействует с скотопсина для формирования родопсина.

Читайте также:  Отслойка сетчатки у кошек

Если человек длительное время (месяцы) не получала витамина А, то развивается куриная слепота, или гемералопией. Ее можно лечить — уже через час после инъекции витамина А она исчезает. Молекулы ретиналя является альдегидами, поэтому их называют ретиналюмы, а витамины груп

Фотохимические и электрические процессы в сетчатке

Рис. 12.11. Фотохимические и электрические процессы в сетчатке

группы А — спирты, поэтому их называют ретинолом. Для образования родопсина с участием витамина А необходимо, чтобы 11-цис-ретиналь превратился в 11-транс-ретинола.

особенности:

1. МП фоторецепторов очень низким (25-50 мВ).

2. На свете в наружном сегменте Na + — каналы закрываются, а в темноте — открываются. Соответственно на свете в фоторецепторах происходит гиперполяризация, а в темноте — деполяризация. Закрытие Na + -каналов внешнего сегмента вызывает гиперполяризацию путем К + -струму, то есть возникновения тормозного рецепторного потенциала (до 70-80 мВ) (рис. 12.12). В результате гиперполяризации уменьшается или прекращается выделение тормозного медиатора — глутамата, что способствует активации биполярных клеток.

3. В темноте: N а + -каналы внешних сегментов открываются. Na + входит внутрь наружного сегмента и деполяризует мембрану фоторецептора (до 25-50 мВ). Деполяризация фоторецептора приводит к возникновению возбуждающего потенциала и усиливает выделение фоторецептором медиатора глутамата, который является тормозным медиатором, поэтому активность биполярных клеток будет тормозиться. Таким образом, клетки второго функционального слоя сетчатки при воздействии света могут активировать клетки следующего слоя сетчатки, то есть ганглиозные.

Роль клеток второго функционального слоя

Биполярные клетки, как и рецепторные (палочки и колбочки) и горизонтальные, не генерируют потенциалы действия, а лишь локальные потенциалы. Синапсы между рецепторными и биполярными клетками есть двух типов — возбуждающие и тормозные, поэтому локальные потенциалы, продуцируемых ими, могут быть как деполяризации — возбуждающими, так и гиперполяризацийнимы — тормозными. Биполярные клетки получают тормозные синапсы от горизонтальных клеток (рис. 12.13).

Горизонтальные клетки возбуждаются под действием рецепторных клеток, но сами тормозят биполярные клетки. Этот тип торможения называется латеральным (см. Рис. 12.13).

Амакриновые клетки — третий вид клеток второго функционального слоя сетчатки. их активируют

Влияние темноты (А) и света (Б) на транспорт ионов Να * в фоторецепторных клетках сетчатки

Рис. 12.12. Влияние темноты (А) и света (Б) на транспорт ионов Να * в фоторецепторных клетках сетчатки:

Каналы внешнего сегмента в темноте открыты благодаря цГМФ (А). При воздействии света благодаря 5-ГМФ они частично закрываются (Б). Это приводит к гиперполяризации синаптических окончаний фоторецепторов (а — деполяризация б — гиперполяризация)

биполярные клетки, а они тормозят ганглиозные клетки (см. рис. 3.13). Считают, что амакринових клеток более 20 видов и, соответственно, они выделяют большое количество различных медиаторов (ГАМК, глицин, дофамин, индоламин, ацетилхолин и др.). Реакции этих клеток также разнообразны. Одни реагируют на включение света, другие — на выключение, третьи — на движение пятна по сетчатке и тому подобное.

Роль третьего функционального слоя сетчатки

Ганглиозные клетки — единственные классические нейроны сетчатки, которые всегда генерируют потенциалы действия; они расположены в последнем функциональном слое сетчатки, имеют постоянную фоновую активность частотой от 5 до 40 за 1 минуту (Гайтон). Все, что происходит в сетчатке между различными клетками, влияет на ганглиозные клетки.

Они получают сигналы от биполярных клеток, кроме того, на них оказывают тормозящее влияние амакриновые клетки. Влияние от биполярных клеток является двояким в зависимости от того, локальный потенциал возникает в биполярных клетках. Если деполяризации, то такая клетка будет активировать ганглиозного и в ней будет увеличиваться частота потенциалов действия. Если локальный потенциал в биполярной клетке будет гиперполяризацийним, то эффект на ганглиозные клетки будет противоположным, то есть уменьшение частоты ее фоновой активности.

Таким образом, в связи с тем, что большинство клеток сетчатки производят только локальные потенциалы и проведения в ганглиозных клеток является электротонических, это обеспечивает возможность оценки интенсивности освещения. Потенциалы действия, которые осуществляются по принципу «все или ничего», не смогли бы это обеспечить.

В ганглиозных, как и в биполярных и горизонтальных клетках, является рецепторные участки. Рецепторные участки — совокупность рецепторов, которые посылают сигналы к этой клетки через один или большее количество синапсов. Рецепторные участки этих клеток имеют концентрическую форму. В них различают центр и периферию с антагонистической взаимодействием. Размеры рецепторных участков ганглиозных клеток могут быть различными в зависимости от того, какой участок сетчатки посылает к ним сигналы; они будут меньше рецепторов центральной ямки, по сравнению с сигналами от периферии сетчатки.

Схема функциональных связей клеток сетчатки

Рис. 12.13. Схема функциональных связей клеток сетчатки:

1 — слой фоторецепторов;

2 — слой биполярных, горизонтальных, амакринових клеток;

3 — слой ганглиозных клеток;

Черные стрелки — тормозной эффект, белые — возбуждающий

Ганглиозные клетки с «on»-центром при освещении центра активируются, а при освещении периферии тормозятся. Напротив, ганглиозные клетки с «off’-центром при освещении центра тормозятся, а при освещении периферии — активируются.

Путем изменения частоты импульсов ганглиозных клеток будет меняться влияние на следующий уровень зрительной сенсорной системы.

Установлено, что ганглионарные нейроны — не просто последнее звено в передаче сигнала от рецепторов сетчатки в структуры головного мозга. В них обнаружен третий зрительный пигмент — меланопсин! Ему принадлежит ключевая роль в обеспечении циркадианных ритмов организма, связанных с изменением освещения, он влияет на синтез мелатонина, а также отвечает за рефлекторную реакцию зрачков на свет.

В экспериментальных мышей отсутствие гена, ответственного за синтез меланопсину, приводит к выраженному нарушению циркадианных ритмов, уменьшение интенсивности реакции зрачков на свет, а за инактивации палочек и колбочек — вообще к ее исчезновению. Аксоны ганглионарных клеток, которые содержат меланопсин, направляются в супрахиазматическом ядер гипоталамуса.

Источник