Чувствительность сетчатки глаза к желтому свету с длиной волны 600

Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом[1]. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 ТГц), в зелёной части спектра[2]. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 ТГц), а в качестве длинноволновой — 760—780 нм (395—385 ТГц)[1][3]. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Не всем цветам, которые различает человеческий глаз, соответствует какое-либо монохроматическое излучение. Такие оттенки, как розовый, бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в «оптическое окно» — область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой. Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят излучение в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете[4][5].

История[править | править код]

Круг цветов Ньютона из книги «Оптика» (1704), показывающий взаимосвязь между цветами и музыкальными нотами. Цвета спектра от красного до фиолетового разделены нотами, начиная с ре (D). Круг составляет полную октаву. Ньютон расположил красный и фиолетовый концы спектра друг рядом с другом, подчёркивая, что из смешения красного и фиолетового цветов образуется пурпурный.

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах[6][7].

Читайте также:  Лазеркоагуляция сетчатки при миопии

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели[6][8]. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-жёлтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Бейкеровской лекции Томасом Юнгом, они получены путём перевода в длины волн параметров колец Ньютона, измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов[9]:30-31. Юнг представил полученные значения длин волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм)[10], будучи переведёнными в нанометры, их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий, получив их от видимого излучения Солнца с помощью дифракционной решётки, измерив углы дифракции теодолитом и переведя в длины волн[11]. Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы[9]:39-41. Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

Читайте также:  Поражение сетчатки при атрофии

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует рецепторы трёх различных типов.

Характеристики границ видимого излучения[править | править код]

Длина волны, нм380780
Энергия фотонов, Дж5,23⋅10−192,55⋅10−19
Энергия фотонов, эВ3,261,59
Частота, Гц7,89⋅10143,84⋅1014
Волновое число, см−11,65⋅1050,81⋅105

Спектр видимого излучения[править | править код]

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами[12]. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице[13]:

ЦветДиапазон длин волн, нмДиапазон частот, ТГцДиапазон энергии фотонов, эВ
Фиолетовый≤450≥667≥2,75
Синий450—480625—6672,58—2,75
Сине-зелёный480—510588—6252,43—2,58
Зелёный510—550545—5882,25—2,43
Жёлто-зелёный550—570526—5452,17—2,25
Жёлтый570—590508—5262,10—2,17
Оранжевый590—630476—5081,97—2,10
Красный≥630≤476≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения[13].

См. также[править | править код]

  • Цвет
  • Спектральные и дополнительные цвета

Примечания[править | править код]

  1. 1 2 Гагарин А. П. Свет // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 460. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. ↑ ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения
  3. ↑ ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
  4. Cuthill, Innes C; et al. Ultraviolet vision in birds // Advances in the Study of Behavior (неопр.) / Peter J.B. Slater. — Oxford, England: Academic Press, 1997. — Т. 29. — С. 161. — ISBN 978-0-12-004529-7.
  5. Jamieson, Barrie G. M. Reproductive Biology and Phylogeny of Birds (англ.). — Charlottesville VA: University of Virginia, 2007. — P. 128. — ISBN 1578083869.
  6. 1 2 Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света / Перевод Вавилова С. И. — изд-е 2-е. — М.: Гос. изд-во технико-теоретической литературы, 1954. — С. 131. — 367 с. — (серия «Классики естествознания»).
  7. Coffey, Peter. The Science of Logic: An Inquiry Into the Principles of Accurate Thought (англ.). — Longmans, 1912.
  8. Hutchison, Niels Music For Measure: On the 300th Anniversary of Newton’s Opticks. Colour Music (2004). Дата обращения 11 августа 2006. Архивировано 20 февраля 2012 года.
  9. 1 2 John Charles Drury Brand. Lines Of Light: The Sources Of. — CRC Press, 1995.
  10. Thomas Young. The Bakerian Lecture. On the Theory of Light and Colours (англ.) // Philosophical Transactions of the Royal Society of London for the Year 1802 : journal. — 1802. — P. 39.
  11. Fraunhofer Jos. Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben (нем.) // Denkschriften der Königlichen Akademie der Wissenschaften zu München für die Jahre 1821 und 1822 : magazin. — 1824. — Bd. VIII. — S. 1—76.
  12. ↑ Thomas J. Bruno, Paris D. N. Svoronos. CRC Handbook of Fundamental Spectroscopic Correlation Charts. CRC Press, 2005.
  13. 1 2 Hunt R. W. C. The Reproduction of Colour. — 6th edition. — John Wiley & Sons, 2004. — P. 4—5. — 724 p. — ISBN 978-0-470-02425-6.
Читайте также:  Ангиопатия сетчатки при беременности что это такое

Источник