Аберрации линз сферическая хроматическая астигматизм

© 2013 Vasili-photo.com

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Особняком стоит дифракция, которую хоть и можно отнести к аберрациям объектива, однако в силу её фундаментального характера и принципиальной неустранимости обычно рассматривают отдельно от прочих аберраций.

Монохроматические аберрации

В 1857 г. немецкий математик и астроном Филип Людвиг Зейдель выявил и математически описал пять т.н. монохроматических аберраций третьего порядка. Вот они:

  • Сферическая аберрация
  • Кома
  • Астигматизм
  • Кривизна поля изображения
  • Дисторсия

Настоящая статья написана для фотографов, а не для математиков, а потому нас, прежде всего, интересует не то, какие формулы описывают каждую из аберраций, а то, как аберрации проявляют себя в практической фотографии.

Рассмотрим их по порядку.

Сферическая аберрация

Особенность сферической линзы такова, что лучи света, проходящие через линзу вблизи её края, преломляются сильнее, чем лучи, проходящие через центр. Объясняется это тем, что исходно параллельные лучи света падают на сферическую поверхность линзы под разными углами. Чем дальше лежит путь луча от оптической оси объектива, тем больше угол его падения, и тем сильнее он преломляется. В конечном итоге это приводит к невозможности сфокусировать точку иначе как в виде размытого по краям пятна, и всё изображение оказывается нерезким.

Идеальная линза

Ход световых лучей в идеальной линзе.

Сферическая аберрация

Ход лучей при сферической аберрации.

Диафрагмирование объектива заметно уменьшает сферическую аберрацию, поскольку при уменьшении отверстия диафрагмы отсекается часть лучей, проходящая через край линзы, а оставшиеся вблизи оптической оси лучи формируют более резкое изображение.

При конструировании объективов сферические аберрации устраняются комбинированием положительных и отрицательных линз, а также применением специальных асферических элементов, т.е. линз, преломляющая поверхность которых имеет асферическую форму, с тем расчётом, чтобы, вне зависимости от удалённости лучей света от оптической оси объектива, все они преломлялись по возможности одинаково, и таки сходились при фокусировке в одну точку. Чрезмерное исправление сферических аберраций, кстати, также ни к чему хорошему не приводит: пятно рассеяния становится ярче по краям, нежели в центре, что проявляется в виде кольцеобразного боке.

Кома

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Кома

Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Кривизна поля изображения

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизна поля изображения

Кривизна поля изображения.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Рускеала

Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом»). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Читайте также:  Астигматизм в глазах и плюс

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

Ладога

Это не Земля закругляется, а обычная бочкообразная дисторсия.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматическая аберрация

Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление первичной хроматической аберрации

Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Хроматическая аберрация

Этот фрагмент фотографии иллюстрирует хроматизм увеличения. Наведите курсор для сравнения с программно исправленым вариантом.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

Читайте также:  Линзы 15 лет астигматизм

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.

Сферохроматизм

Сферохроматизм.

Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше, редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы»). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому, досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!

  Дата публикации: 15.11.2013

Лицензия Creative Commons

Вернуться к разделу «Матчасть»

Перейти к полному списку статей

Источник

У этого термина существуют и другие значения, см. Аберрация.

Сфери́ческая аберра́ция — аберрация оптических систем из-за несовпадения фокусов для лучей света, проходящих на разных расстояниях от оптической оси[1]. Приводит к нарушению гомоцентричности пучков лучей от точечного источника, без нарушения симметрии строения этих пучков (в отличие от комы и астигматизма). Различают сферическую аберрацию третьего, пятого и высшего порядков[2].

Условия рассмотрения[править | править код]

Сферическую аберрацию принято рассматривать для пучка лучей, выходящего из точки предмета, расположенной на оптической оси. Однако, сферическая аберрация имеет место и для других пучков лучей, выходящих из точек предмета, удаленных от оптической оси, но в таких случаях она рассматривается как составная часть аберраций всего наклонного пучка лучей. Причём, хотя эта аберрация и называется сферической, она характерна не только для сферических поверхностей.

В результате сферической аберрации цилиндрический пучок лучей, после преломления линзой (в пространстве изображений) получает вид не конуса, а некоторой воронкообразной фигуры, наружная поверхность которой, вблизи узкого места, называется каустической поверхностью. При этом изображение точки имеет вид диска с неоднородным распределением освещённости, а форма каустической кривой позволяет судить о характере распределения освещённости. В общем случае, фигура рассеяния, при наличии сферической аберрации, представляет собой систему концентрических окружностей с радиусами пропорциональными третьей степени координат на входном (или выходном) зрачке.

Сферическая аберрация линзы (системы линз) объясняется тем, что её преломляющие поверхности встречают отдельные лучи сколько-нибудь широкого пучка под различными углами[П 1]. Вследствие чего, более удалённые от оптической оси лучи преломляются сильнее, нежели нулевые[П 2] лучи, и образуют свои точки схода удалённые от фокальной плоскости[3].

Расчётные значения[править | править код]

Расстояние δs’ по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией.

Диаметр δ’ кружка (диска) рассеяния при этом определяется по формуле

,

где

  • 2h1 — диаметр отверстия системы;
  • a’ — расстояние от системы до точки изображения;
  • δs’ — продольная аберрация.

Для объектов расположенных в бесконечности

,

где

  • f’ — заднее фокусное расстояние.

Для наглядности сферическую аберрацию, как правило, представляют не только в виде таблиц, но и графически.

Графическое представление[править | править код]

Обычно приводят графики продольной δs’ и поперечной δg’ сферической аберраций, как функций координат лучей[4].

Для построения характеристической кривой продольной сферической аберрации по оси абсцисс откладывают продольную сферическую аберрацию δs’, а по оси ординат — высоты лучей на входном зрачке h. Для построения аналогичной кривой для поперечной аберрации по оси абсцисс откладывают тангенсы апертурных углов в пространстве изображений, а по оси ординат радиусы кружков рассеяния δg’

Положительные (собирательные) линзы создают отрицательную сферическую аберрацию, то есть δs’ < 0 для всех зон. Поэтому, на графике, характеристическая кривая продольной аберрации для такой линзы находится слева от оси ординат. Отрицательные (рассеивающие) линзы имеют аберрацию противоположного знака, и соответствующая кривая продольной аберрации будет справа от оси ординат.

Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

Зависимость величины продольной сферической аберрации (δs’ ) от формы линзы.

Уменьшение и исправление[править | править код]

Как и другие аберрации третьего порядка, сферическая аберрация зависит от кривизны поверхностей и оптической силы линзы. Поэтому применение оптических стёкол с высокими показателями преломления позволяют уменьшить сферическую аберрацию, посредством увеличения радиусов поверхностей линзы при сохранении её оптической силы.

Уменьшение влияния сферической аберрации
1. диафрагмированием;
2. с помощью дефокусировки.

К тому же, для линз с разной кривизной поверхностей будет иметь значение ориентация линзы относительно хода светового луча. Так, например, сферическая аберрация для плоско-выпуклой линзы, обращенной навстречу лучу своей плоской поверхностью, будет иметь величину бо́льшую, нежели для той же линзы, но встречающей луч своей выпуклой поверхностью. Таким образом, выбор отношения кривизны первой[П 3] поверхности линзы, к её второй поверхности, так же, будет одним из средств уменьшающих сферическую аберрацию.

Заметное влияние на сферическую аберрацию оказывает диафрагмирование объектива (или иной оптической системы), так как при этом отсекаются краевые лучи широкого пучка. Очевидно, что этот способ непригоден для оптических систем, требующих высокой светосилы.

В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки[П 4] объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки», находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния)[П 5]. Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю[5]. То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации.
Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

Пересечения лучей возле точки заднего фокуса при остаточной сферической аберрации, соответствующие им диски рассеяния и графики продольной сферической аберрации:
1. — при исправленной сферической аберрации для нулевых и крайних лучей;
2. и 3. — при «переисправленной» сферической аберрации.
Где F’ — задняя фокальная плоскость,
δs’  — расстояние от точки заднего фокуса до точки схода краевых лучей,
— δs’0,7h’ — расстояние от точки заднего фокуса до точки схода «среднезонных» лучей.

Достаточно успешно сферическая аберрация исправляется при помощи комбинации из положительной и отрицательной линз[6]. Причём, если линзы не склеиваются, то, кроме кривизны поверхностей компонентов, на величину сферической аберрации будет влиять и величина воздушного зазора (даже в том случае, если поверхности, ограничивающие этот воздушный промежуток, имеют одинаковую кривизну).
При этом способе коррекции, как правило исправляются и хроматические аберрации.

Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

Обычно сферическую аберрацию устраняют для одного значения высоты h0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте he определяемой по простой формуле

Остаточная сферическая аберрация приводит к тому, что изображение точки так и не станет точечным. Оно останется диском, хотя и значительно меньшего размера, чем в случае не исправленной сферической аберрации.

Для уменьшения остаточной сферической аберрации часто прибегают к рассчитанному «переисправлению» на краю зрачка системы, придавая сферической аберрации краевой зоны положительное значение (δs’ > 0). При этом, лучи, пересекающие зрачок на высоте he[П 6], перекрещиваются ещё ближе к точке фокуса, а краевые лучи, хотя и сходятся за точкой фокуса, не выходят за границы диска рассеяния. Таким образом, размер диска рассеяния уменьшается и возрастает его яркость. То есть улучшается, как детальность, так и контраст изображения. Однако, в силу особенностей распределения освещённости в диске рассеяния, объективы с «переисправленной» сферической аберрацией, часто, обладают «двоящим» размытием вне зоны фокуса.

В отдельных случаях допускают значительное «переисправление». Так, например, ранние «Планары» фирмы Carl Zeiss Jena имели положительное значение сферической аберрации (δs’ > 0), как для краевых, так и для средних зон зрачка. Это решение несколько снижает контраст при полном отверстии, но заметно увеличивает разрешение при незначительном диафрагмировании.

См. также[править | править код]

  • Аберрация оптической системы
  • Хроматическая аберрация

Примечания[править | править код]

  1. ↑ Или же можно сказать, что оптическая сила сферической линзы неоднородна, и возрастает по мере удаления от оптической оси
  2. ↑ Эти лучи также именуются параксиальными лучами
  3. ↑ Согласно правилам знаков и ГОСТ 7427-76, преломляющие и отражающие поверхности и разделяющие их среды нумеруются по порядку их следования в направлении распространения света
  4. ↑ Согласно теории аберраций, дефокусировка — это аберрация первого, то есть более низкого, порядка.
  5. ↑ Самое узкое место пересечения всех лучей широкого пучка, проходящего через собирающую линзу, находится слева от гауссовой плоскости (точки фокуса) на расстоянии ¾δs’.
  6. ↑ Эти лучи иногда именуются среднезонными лучами

Источники[править | править код]

  1. ↑ Фотокинотехника, 1981, с. 322.
  2. ↑ Волосов, 1978, с. 133, 138.
  3. ↑ Малоформатная фотография, 1959, с. 292.
  4. ↑ Волосов, 1978, с. 115.
  5. ↑ Волосов, 1978, с. 113.
  6. ↑ Малоформатная фотография, 1959, с. 293.

Литература[править | править код]

  • Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 322. — 447 с.
  • Д. С. Волосов. Глава II. Оптические аберрации объективов // Фотографическая оптика. — 2-е изд. — М.,: «Искусство», 1978. — С. 91—234. — 543 с.
  • А. Н. Веденов. Недостатки линзы и её исправление в объективе // Малоформатная фотография / И. В. Барковский. — Л.,: Лениздат, 1959. — С. 291—297. — 675 с.
  • Н. П. Заказнов, С. И. Кирюшин, В. И. Кузичев. Глава V. Детали оптических систем // Теория оптических систем / Т. В. Абивова. — М.: «Машиностроение», 1992. — С. 53—91. — 448 с. — 2300 экз. — ISBN 5-217-01995-6.
  • В. Н. Чуриловский. Глава I. Геометрическая оптика // Теория оптических приборов / А. П. Грамматин. — М.: «Машиностроение», 1966. — С. 28—35. — 274 с. — 14 000 экз.

Ссылки[править | править код]

  • Сферическая аберрация в объективах. Статья на фотопортале «Перископ»

Источник

Читайте также:  Опасна ли операция при астигматизме