Вращение глаза вокруг оси

Схема глазодвигательных мышц:
1. Общее сухожильное кольцо
2. верхняя прямая мышца
3. нижняя прямая мышца
4. медиальная прямая мышца
5. латеральная прямая мышца
6. верхняя косая мышца
8. нижняя косая мышца
9. мышца, поднимающая верхнее веко
10. веко
11. глазное яблоко
12. зрительный нерв

Движения глаз — необходимая составляющая работы зрительного анализатора живых организмов.

Движения глаз могут быть классифицированы по различным основаниям. Существует деление на быстрые движения глаз, такие как саккады, тремор и дрейф, и медленные, такие как медленное прослеживание и вергентные движения глаз.
Другие авторы разделяют движения глаз на согласованные и несогласованные. Саккады относят к согласованным, а вергентные движения глаз, тремор и дрейф — к несогласованным движениям глаз.

Движение глаз осуществляется мышцами, иннервируемыми глазодвигательным, блоковым и отводящим нервами. При этом движения глаз могут быть как произвольными, так и непроизвольными, нормальными и патологическими.

Анатомия движений глаз[править | править код]

Глазное яблоко представляет собой шарообразное тело, которое имеет несколько осей вращения. Его положение в орбите практически ничем не ограничено. Все оси вращения пересекаются в точке вращения глазного яблока, которая в норме находится на 13,5 мм сзади от роговицы. Движение глаз вызывается содружественными сокращениями глазных мышц, то есть сокращением одних и расслаблением других.

За движения глаз ответственны 6 мышц — верхняя, нижняя, медиальная и латеральная прямые (лат. mm.rectus superior, inferior, medialis et lateralis), верхняя и нижняя косые (лат. mm.obliquus superior et inferior) мышцы.

Движение каждого глаза осуществляется в трёх плоскостях. Движение одного глазного яблока называется дукцией. В зависимости от плоскости движения различают следующие виды движений глаза:

  • Аддукция — приведение (глаз поворачивается к носу). Её совершает медиальная прямая мышца
  • Абдукция — отведение (глаз поворачивается в сторону виска). Её совершает латеральная прямая мышца
  • Супрадукция или поднятие глаза кверху осуществляется верхней прямой мышцей
  • Инфрадукция или опускание глаза осуществляется нижней прямой мышцей
  • Инциклодукция — движение глаза в Y-плоскости, когда его верхняя окружность вследствие вращения приводится к носу — верхняя косая мышца
  • Эксциклодукция — противоположно инциклодукции. Верхняя окружность отводится к виску — нижняя косая мышца
  • Абдукция

  • Аддукция

  • Супрадукция

  • Инфрадукция

  • Инциклодукция

  • Эксциклодукция

Иннервация взора[править | править код]

Изолированные движения одного глаза независимо от другого у здорового человека невозможны, оба глаза всегда двигаются одновременно, то есть всегда сокращается пара глазных мышц. Так, например, при взгляде вправо участвуют прямая латеральная мышца (лат. m.rectus lateralis) правого глаза иннервируемая отводящим нервом (лат. nervus abducens) (VI нерв) и медиальная прямая мышца (лат. m.rectus medialis) левого глаза иннервируемая глазодвигательным нервом (лат. nervus oculomotorius) (III нерв). Сочетанные произвольные движения глаз в различных направлениях — функция взора — обеспечиваются системой медиального продольного пучка (лат. fasciculus longitudinalis medialis). От этих ядер медиальный продольный пучок идёт с обеих сторон параллельно средней линии от покрышки среднего мозга вниз к шейной части спинного мозга. Он связывает ядра двигательных нервов глазных мышц и получает импульсы из шейной части спинного мозга (обеспечивающей иннервацию задних и передних мышц шеи), от ядер вестибулярных нервов, из ретикулярной формации, контролирующей «центры зрения» в мосту и среднем мозге, от коры большого мозга и базальных ядер.

Движения глазных яблок могут быть как произвольными, так и рефлекторными, но при этом только содружественными, то есть сопряжёнными, во всех движениях участвуют все мышцы глаза, либо напрягаясь (агонисты), либо расслабляясь (антагонисты).

За непроизвольные движения глаз ответственна кора затылочной доли больших полушарий мозга, а за произвольные — лобных.

Рефлекс фиксации[править | править код]

Направление глазных яблок на объект осуществляется произвольно. Но всё же большинство движений глаз происходит рефлекторно. Если в поле зрения попадает какой-нибудь предмет, на нём непроизвольно фиксируется взгляд. При движении предмета глаза непроизвольно следуют за ним, при этом изображение предмета фиксируется в точке наилучшего видения на сетчатке, то есть в зоне ямок жёлтых пятен. Когда мы произвольно рассматриваем интересующий нас предмет, взгляд автоматически задерживается на нём, даже если мы сами или предмет движется. Таким образом, произвольные движения глаз основаны на непроизвольных рефлекторных движениях. Этот рефлекс — фиксирование изображения интересующего объекта на сетчатке в зоне наиболее чёткого видения — называется рефлексом фиксации.

Афферентный путь (чувствительные волокна) этого рефлекса идёт от сетчатки по зрительным путям к зрительной коре (поле 17 — затылочная доля). Оттуда импульсы передаются в зоны 18 и 19 (затылочная доля). Эфферентные (двигательные) волокна, вероятно, возникают именно в этих зонах, затем временно присоединяются к волокнам зрительной лучистости, следуя к контралатеральным глазодвигательным центрам моста и среднего мозга. Отсюда волокна идут к соответствующим ядрам двигательных нервов глаза. Вероятно, некоторые эфферентные волокна идут прямо к глазодвигательным центрам.

В передних отделах среднего мозга имеются специальные структуры ретикулярной формации, регулирующие определённые направления взгляда. Престициальное ядро в задней стенке третьего желудочка регулирует движения глазных яблок кверху; ядро в задней спайке — движения книзу; интерстициальное ядро Кахаля и ядро Даркшевича — ротаторные движения глазных яблок.

Сегменты верхних бугорков четверохолмия также могут быть ответственны за движения глазных яблок в определённых направлениях. Центры, ответственные за движения кверху, находятся в передних отделах верхних бугорков; разрушение этой области вызывает паралич взора кверху (синдром Парино). Импульсы, возникающие в полюсах затылочных долей, также передаются в контралатеральные глазодвигательные центры моста и вызывают содружественные боковые движения глазных яблок.

Экспериментальная стимуляция полей 18 и 19 приводит к содружественным движениям глаз книзу, кверху и в стороны. Боковые движения глазных яблок у людей являются, безусловно, ведущими и наиболее частыми из тех, которые продуцируются затылочной корой.

Произвольные движения глаз[править | править код]

Импульсы, вызывающие произвольные движения глаз, исходят из лобного центра взора, находящегося в 8-м поле Бродмана, а также возможно, из определённых участков полей 6 и 9. Наиболее частым ответом на стимуляцию вышеуказанных областей являются содружественные движения глазных яблок в противоположную сторону (содружественное отведение); больной «отворачивается от очага раздражения». Иногда движения глазных яблок сопровождаются движениями головы по направлению к противоположной стороне. Унилатеральная деструкция поля 8 приводит к доминированию соответствующей зоны на противоположной стороне, проявляющейся содружественными движениями в сторону поражения (больной «смотрит» на очаг поражения). Со временем это отклонение взора ослабевает. При поражении моста наблюдается обратная ситуация, поскольку корково-мостовые через которые идут импульсы к ядрам глазодвигательных нервов, перекрещиваются. Паралич взора, обусловленный поражением моста, редко восстанавливается полностью.

Не совсем ясно, как лобные центры взора связаны с ядрами нервов, иннервирующих мышцы глазных яблок. Соответствующие волокна сопровождают корково-ядерный тракт на его пути к внутренней капсуле и ножкам мозга. Однако они не оканчиваются непосредственно на ядрах черепных нервов. Обнаружено, что импульсы передаются с этих волокон на указанные ядра через вставочные нейроны ретикулярной формации и через fasciculus longitudinalis medialis.

Читайте также:  Чем убрать морщины вокруг глаз

Все произвольные движения глаз находятся под влиянием рефлекторных дуг. Некоторые из этих дуг принадлежат к зрительной рефлекторной дуге, другие — к рефлекторным дугам слуха, равновесия и проприорецепции (эти дуги начинаются в вентральных и дорсальных мышцах шеи и передаются через лат. tractus spinotectalis и fasciculus longitudinalis medialis).

После унилатерального разрушения лобного центра взора глаза в течение некоторого времени не могут быть произвольно повёрнуты в противоположную сторону, но рефлекторно такое движение возможно. Больной способен непроизвольно следить глазами за медленно движущимся в его поле зрения предметом, даже если он не может делать это произвольно (рефлекс слежения).

Наоборот, при разрушении затылочных полей зрения, рефлекторные движения глаз исчезают. Больной может совершать произвольные движения глазами в любых направлениях, но он не может следить за предметом. Предмет немедленно исчезает из области наилучшего видения и отыскивается вновь с помощью произвольных движений глаз.

При поражении fasciculus longitudinalis medialis возникает межъядерная офтальмоплегия. При одностороннем повреждении медиального продольного пучка нарушается иннервация гомолатеральной (расположенной на той же стороне) m.rectus medialis, а в контралатеральном глазном яблоке возникает моноокулярный нистагм. В то же время сокращение мышцы в ответ на конвергенцию сохраняется. Ввиду того что fasciculus longitudinalis medialis располагаются близко друг от друга, один и тот же патологический очаг может затронуть оба пучка. В этом случае глаза не могут быть приведены внутрь при горизонтальном отведении взора. В ведущем глазу возникает монокулярный нистагм. Остальные движения глазных яблок и реакция зрачков сохраняются. Причиной односторонней межъядерной офтальмоплегии обычно являются сосудистые заболевания. Двусторонняя межъядерная офтальмоплегия обычно наблюдается при рассеянном склерозе.

Литература[править | править код]

  • Bing Robert Компендіумъ топической діагностики головного и спинного мозга. Краткое руководство для клинической локализации заболеваній и пораженій нервныхъ центровъ Переводъ съ второго изданія — Типографія П. П. Сойкина — 1912
  • Гусев Е. И., Коновалов А. Н., Бурд Г. С. Неврология и нейрохирургия: Учебник. — М.: Медицина, 2000
  • Дуус П. Топический диагноз в неврологии Анатомия. Физиология. Клиника — М. ИПЦ «Вазар-Ферро», 1995
  • Джозеф О’Коннор, Джон Сеймор. Введение в нейролингвистическое программирование. Новейшая психология личного мастерства
  • Нервові хвороби/ С. М.Віничук, Є.Г.Дубенко, Є.Л.Мачерет та ін.; За ред. С. М.Віничука, Є.Г.Дубенка — К.: Здоров’я, 2001
  • Пулатов А. М., Никифоров А. С. Пропедевтика нервніх болезней: Учебник для студентов медицинских институтов — 2-е изд. — Т.: Медицина, 1979
  • Синельников Р. Д., Синельников Я. Р. Атлас анатомии человека: Учеб. Пособие. — 2-е изд., стереотипное — В 4 томах. Т.4. — М.: Медицина, 1996
  • Триумфов А. В. топическая диагностика заболеваний нервной системы М.: ООО «МЕДпресс». 1998
  • Boonstra F.M. Fusional vergence eye movements in microstrabismus. Ph.D. Thesis / F.M. Boonstra.- Groningen, 1997.- 152p.
  • Carpenter R.H.S. Movements of the eyes / R.H.S. Carpenter.- London: Pion, 1977.-292p.

Источник

Выделяют три вида произвольных движений глаз: дукционные, верзионные (торзионные) и вергентные.

Дукционные движения подразделяют на приводящие (аддукция), отводящие (абдукция), поднимающие, опускающие, вращающие (судят по смещению верхнего конца вертикального меридиана роговицы кнутри или кнаружи). В зависимости от роли той или иной мышцы в дукционном движении исследуемого глаза рассматривают агониста (основного двигателя в заданном направлении), синергистов (вспомогательных двигателей в том же направлении) и антагониста (действующего в противоположном направлении). Как установил Шеррингтон, при напряжении мышцы-агониста мышца, находящаяся в реципрокнои зависимости от первой, автоматически расслабляется.

Синхронные и симметричные смещения взора обоих глаз в одном и том же заданном направлении называют верзионными. Согласно правилу Геринга, к попарно работающим мышцам обоих глаз в норме направляется одинаковый по силе нервный импульс. Выделяют девять кардинальных позиций взора. На рис.5.4, кроме первичной, представлены еще шесть позиций (две вторичные позиции — прямо вверх и прямо вниз — исключены). Стрелками показано, благодаря каким попарно работающим мышцам осуществляются эти верзионные движения.

При рассмотрении четырех третичных позиций взора (рис. 5.5) создается впечатление вращения (торзии) глазных яблок вокруг оси Y. Действительно, на рис. 5.5 верхний конец вертикального меридиана представляется наклоненным либо к носу (intorsion), либо к виску (extorsion). Однако, по мнению R.M. Burde и S.E. Feldon (1987), следует согласиться с J.B. Listing, который еще в 1854 г. показал, что это является результатом смещения глаза только относительно координат X и Z (см.рис. 5.1,6), т.е. вращения глаза вокруг некой косой оси, а потому описанный эффект является псевдоторзионным. Истинная торзия вокруг оси Y возможна лишь в небольших пределах при непроизвольной циклодукции.

Вергентными называют такие бинокулярные движения глазных яблок, при которых они синхронно и симметрично смещаются по горизонтали в противоположных направлениях. Движения навстречу друг другу называют конвергенцией, в обратных направлениях — дивергенцией. Конвергенция и дивергенция могут быть произвольными, но чаще они происходят рефлекторно, т.е. непроизвольно.

Группу, состоящую из некоторых непроизвольных движений глаз, иногда называют спонтанным физиологическим нистагмом. В эту группу входят тремор, дрейф и скачки (саккады). Эти движения неизбежно присутствуют даже при стремлении обследуемого сохранить взором непрерывную фиксацию какого-либо неподвижного точечного стимула. Именно благодаря им преодолеваются те тормозные процессы, которые невольно возникают в длительно стимулируемом участке сетчатки. О некоторых количественных характеристиках непроизвольных микродвижений глаз можно судить по данным, приводимым A.Levy-Shoen (1969), которые основаны на результатах исследований различных авторов (табл. 5.1).

Перечисленные виды микродвижений здоровых глаз представляют интерес для психологов и физиологов, в частности в связи с решением проблем эргономики зрительного утомления [ Ярбус А.Л., 1965; Волков В.В., 1989; Сомов Е.Е., 1992 ].

К непроизвольным движениям глаз, обеспечивающим бинокулярное зрение, относятся вергентные (не только произвольные, но и непроизвольные) и фузионные движения глаз, а также циклодук-ция. В вергентном рефлексе выделяют четыре компонента:

· тонический — результат врожденной способности сразу после пробуждения от сна благодаря нервной импульсации придавать мышцам глаза определенный тонус;

· проксимальный — результат психогенного осознания близости или удаленности объекта фиксации;

· фузионный — проявление оптомоторной реакции в ответ на диспаратность ретинальных изображений; в итоге без изменений в рефракции глаза изображения оказываются на корреспондирующих точках сетчатки (при битемпоральной диспаратности возбуждается конвергенция, при биназальной — дивергенция);

· аккомодативный — результат нормального влияния аккомодации на конвергенцию (проявление синкинетической реакции на близко расположенные стимулы). В норме на 1,0 диоптр, аккомодации приходится прирост конвергенции в 4 призменных диоптрии. Отношение аккомодативной конвергенции к аккомодации обозначают АК/А. Результат выражают в призменных диоптриях на единицу аккомодации, измеренной в диоптриях.

В этой группе отдельно стоит циклодукция, которая проявляется в том, что при наклоне головы к одному или другому плечу оба глазных яблока испытывают истинный торзионный эффект: компенсаторно вращаются наподобие рулевого колеса. При этом каждый глаз верхним концом вертикального меридиана разворачивается в сторону, противоположную стороне наклона головы. Наклон к носу называют инциклодукцией, к виску — эксциклодукцией. По данным R.S. Jampel (1970), в этом случае вокруг оси Y вращается не столько все глазное яблоко, сколько его передний отдел (вокруг точки на наружном лимбе). Таким способом поддерживается сенсорное постоянство расположения вертикали швов сетчатки относительно горизонта. При наклоне головы на 30° глаз непроизвольно компенсаторно отклоняется на 7—8° в противоположную сторону [Кириллов Ю.А., 1976].

Читайте также:  Гусиные лапки вокруг глаз фото до и после

Если сопоставить амплитуду непроизвольных движений глаз при фиксации неподвижного стимула, то, как установил Э.С. Аветисов (1977), при наличии бификсации глазные яблоки заметно устойчивее. Величина поля бификсации по горизонтали составляет 5—10 мин, а по вертикали не выходит за пределы 4 мин. Удержание объекта фиксации в пределах узкого фузионного поля является результатом непроизвольной статической работы глазодвигательных мышц, координируемой сенсорным аппаратом бинокулярного зрения.

Дата добавления: 2015-06-28; просмотров: 2115; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9688 — | 7412 — или читать все…

Читайте также:

Источник

Сегодня я расскажу про то, почему, когда вы наклоняете голову, глаз автоматически поворачивается на заданный угол с очень точной синхронизацией без потери объектов в фокусе. Ещё как мы, врачи, подключаем ток к нервам и «прозваниваем» цепь, чтобы понять, что всё работает. И про то, что будет, если участки этой цепи отрезать или повреждать.

Да простят меня коллеги-научники за упрощения и неканоническую терминологию.

Ну и ещё отвечаю на вопрос, когда удалять здоровый правый глаз, если у пациента серьёзная инфекция на левом.

Данные и управление

К глазу подключены две сети: двигательная и чувствительная. Чувствуете, как ненаучно звучит, да? Потому что называется всё это совсем иначе, но, по сути, именно так и работает. Как я уже говорила, сразу прошу прощения — меня интересует больше практика, потому что я врач, а не исследователь.

Чувствительная сеть передаёт данные (в том числе сам «видеопоток» с сетчатки и ощущения от прикосновений к глазу), а двигательная — сигналы управления. Эти сети связаны и имеют пересечения в виде рефлекторных дуг. Рефлекторные дуги (опять же упрощая) — это средства для исполнения каких-то простых программ без задействования более высоких в иерархии нервных узлов.

Когда вы трогаете горячее, то сначала отдёргиваете руку, потом думаете. Это сработала рефлекторная дуга от чувствительной системы руки (превышение порога по температуре) к двигательной (если вот этот «датчик» говорит о проблемах — сразу дёргай на себя!). Связки сделаны на ядрах нервов — узлах сети.

От чувствительной части тройничного нерва импульсы могут передаваться в лицевой нерв и спускаться по двигательным волокнам к мышцам. Без участия мозга, конечно.

Тройничный нерв иннервирует всё лицо и часть мягких тканей свода черепа, именно он на картинке сверху поста. В стволе мозга он начинается от двух ядер: чувствительного и двигательного. У него три основные чувствительные ветки (потому и тройничный). Первая ветка — спинка носа, лоб, верхнее веко и глазное яблоко. Вторая — гайморовы пазухи, зубы верхней челюсти. Третья — нижняя челюсть, кожа, дёсны.

На практике важно, что воспаления около или за глазом, в полости орбиты будут прочувствованы, данные собраны и донесены до узлов в верхней части иерархии — нервы собираются и идут в полость черепа и основание. Если ломается чувствительность — заметно будет по векам, что происходит, они как будто не свои, онемели. Если начинается невралгия — колет и болит всё лицо. Если в узле тройничного нерва поселился герпес, он может спуститься по веткам и высыпать на веки и крылья носа. Даже на роговицу, что кончается печально.

Потоки информации

Программа-рефлекс может быть, например, такая. Если в глаз попадает песчинка — по веткам этого тройничного нерва данные о боли или дискомфорте попадают в центр чувствительности (верхний узел сети). Там данные через нейронную сеть отдаются в ядро лицевого нерва в области ствола головного мозга. Создаётся команда, которая обеспечивает моргание и слезотечение. Если что-то идёт не так, то информация поднимается всё выше и выше, пока вы не примете сознательное усилие посмотреть в зеркало и вытащить попавшую ресницу из глаза руками. Если автоматика отказывает, надо думать. Эволюция к этому долго шла.

Лицевой нерв отвечает в первую очередь за движения (на основании мозга к нему присоединяется промежуточный нерв, отвечающий за вкусовые и секреторные функции). Он тоже удивительный во многом и очень хорошо продуманный. Например, сокращение мышц по одной из его веток (чтобы моргнуть из-за сухости в глазах, это происходит раз в 3–5 секунд) устроено так, что эти же мышцы заодно сдавливают железы в веках. Железы (мейбомиевые и Цейса) выбрасывают при этом сдавливании секрет, то есть небольшое количество липидной фракции слёзной плёнки. На расслаблении открывается слёзная точка (вход в слёзный мешок), по которому слеза уходит в нос (нижний его ход). Получается, что мышца постоянно качает слезу и отводит её, а нерв управляет этим насосом.

Для слёзной железы есть отдельная ветка (тот самый промежуточный нерв), входящий в состав рефлекторной дуги с чувствительными веточками тройничного нерва, идущими от слизистой носа. Поэтому если вы нюхаете перец, вместе с соплями пойдут слёзы. А лайфхак в том, что бить в нос не только больно, но ещё и обидно — даже здоровые мужики плачут. Не знаю, зачем вам это пригодится.

Теперь перейдём к интересностям. Посмотрите картинку. Пока по ней ничего не понять, но она пригодится дальше:

Двигательная иннервация — это не только открыть-закрыть глаза. Это ещё движения в стороны, повороты глаза вверх-вниз. Есть отдельный блоковый нерв, он идёт в полость орбиты глаза и там иннервирует верхнюю косую мышцу, она опускает и отводит глаз наружу. А отводящий нерв отводит глаз наружу: это самостоятельный нерв и отдельная мышца. Остальные 4 мышцы управления поворотами глаза управляются глазодвигательным нервом.

Если бы мы проектировали человека с нуля, наверное, надо было бы делать одну систему. Но начиная с рептилий что-то уже пошло не так, поэтому есть отдельные нервы, связанные очень обширной сетью рефлекторных дуг. Все положения глаза регулируются сознательно и бессознательно, и когда вы поворачиваете глаз, бессознательно задействуются сразу три разных пути для управления мышцами.

Сложное управление

Управляющие центры движений лежат уровнями выше. В лобной доле мозга (основание второй лобной извилины) находится центр сознательной координация взора, когда вы явно хотите повернуть глаз по результатам длительных размышлений.

Второй центр в затылочной доле — непроизвольные движения глаз. Когда вы наклоняете голову, глаз поворачивается сразу на нужный угол. Для этого ядро нерва «снимает» данные с вестибулярного аппарата и через рефлекторную дугу передаёт управляющий сигнал на поворот сразу нескольким мышцам обоих глаз.

Читайте также:  Акватель крем вокруг глаз отзывы

У детей мы проверяем непроизвольные движения игрушками. Показываем яркую интересную игрушку, потом прячем и ведём из слепой зоны в поле зрения. Если ребёнок поворачивает за ней голову — всё в порядке, затылочные центры отработали.

Лобный центр имеет больший приоритет в сравнении с затылочным. Если мы достаточно внимательно смотрим на конкретный предмет, а рядом едет машина, то лобный центр запрещает отвлекаться на такое большое, быстрое и красивое, хотя это рефлекс. Поэтому самые внимательные суслики получают по голове бампером.

Есть ещё корковые центры, отвечающие за сложные состояния по чтению, распознаванию образов, оценку увиденного, зрительную память. Соединение между корой и ядрами соответствующих нервов проходит через таламус. Это скопление серого вещества, структура, в которой происходит обработка и интеграция практически всех сигналов, чтобы процесс шёл плавно и непрерывно. Очень сложное место в управлении.

Если пациенту вбили гвоздь в голову и попали в лобную долю (или началось воспаление, или недостаточная трофика, опухоли, сложное отравление — в общем, много причин повреждений), он не может посмотреть на какой-то предмет сознательно, появляются неконтролируемые стереотипные движения (и не только глаз, да, там ещё много других нарушений будет). Если в затылочную — сознательно может, вот только не понимает, что видит, или галлюцинирует.

Устойчивость нервной сети к повреждениям

Теперь про то, насколько быстр и точен бессознательный контроль. Чтобы посмотреть влево, вам необходимо задействовать оба нерва — глазодвигательный и отводящий, потому что один глаз надо привести к носу, второй отвести наружу. Соответственно, эти нервные волокна должны синхронизироваться. Когда такая связь разрывается (а оба нерва в порядке — нередкий случай при кровоизлиянии, травмах, рассеянном склерозе или инсульте), то сознательно создать движение «посмотреть на машину, едущую слева, обоими глазами» уже не выйдет, двигаться будет только один, а второй стоять на месте, появится раздражающее двоение. Потом уже пациент адаптируется, нейронная сеть начинает перераспределять функции, переоценивается информация в мозге — и может большее значение придаваться сигналу только с левого или правого глаза, а не сочетанию картинок.

По положению глаза легко определить, который из нервов пострадал, например, после ДТП или инсульта. Если глаз смотрит прямо в нос — это повреждение отводящего нерва. Если в нос по характерной диагонали — повреждение блокового. Повреждения глазодвигательного — это глаз смотрит наружу, вниз, прикрыт веком больше, чем здоровый, и болит. Лицевой — глаз сохнет и плохо или совсем не закрывается.

В коме у пациента почти ничего не работает из-за угнетения функции коры, подкорковых и стволовых структур. Она может быть внезапной или развиваться постепенно. По сохранности рефлексов можно оценивать глубину комы. Будут остаточные реакции, например, если дёрнуть пинцетом за глаз — будет лёгкое подрагивание века, а зрачки продолжают сужаться на свет.

У пациентов в сознании нарушение проведения сигнала тоже иногда происходит. В этом случае мы сами мало что можем сделать — не совсем наш профиль. Мы отвечаем, по сути, за видеокамеру, а не проводку и хаб. Поэтому идём к нашему аналогу электрика-сетевика — к неврологу. У него есть специальный прибор для электронейромиографии — он помогает исследовать электрические потенциалы нервов и мышц с помощью различных воздействий (чаще слабый электрический разряд). Всё это точно замеряется. Если импульс проходит, значит, нерв почти в порядке. Нам обычно доводят результат, и мы продолжаем работать, думая, что такой результат могло вызвать и как это лечить.

Но есть случаи, когда так померить нельзя. В глаз таким прибором мы не залезем, поэтому применяется другой способ. Например, при потере зрительного сигнала необходимо выяснять, что это, собственно, было: поражение нерва или процессы на сетчатке, либо вообще за глазом. По электроретинографии или зрительным вызванным потенциалам можно оценить уровень поражения, нужно ли делать операцию (или смысла нет, если проблемы на нервной сети).

Волокна от сетчатки объединяются в зрительный нерв и идут через всю голову в затылок в зрительную кору. Над гипофизом (в хиазме) часть волокон перекрещиваются и меняются сторонами — это нужно для синхронизации левого глаза и правого, в «правой» картинке есть часть информации левой, а в «левой» — часть информации правой, поэтому мозг точно знает, где и что изображено, насколько близко, а также позволяет оценить объём. Дальше волокна уходят в латеральное коленчатое тело, получают первичную обработку сигнала у таламуса и верхнего ядра четверохолмия, далее волокна веером распадаются на зрительную лучистость, идущую через височную долю к зрительной коре.

Соответственно, травма виска — у пациента нет куска поля зрения. Каждое место поражения имеет свои особенности. Если до перекрёста — поле выпало только с одной поражённой стороны. Если проблема в области перекрёста — то выпадают наружные или внутренние куски с двух сторон. Чаще снаружи. Если на уровне зрительной коры — чаще всего «выпавшая» точка с одной и симметричная с другой. Есть частичные повреждения — будут сегменты, симметричные слева с носа, справа с виска, но сдвинутые в одну сторону. При инсульте в штопорной зоне часто выпадает слева мелкий кусок. Оценка полей зрения даёт много информации как нам, так и неврологам.

И напоследок — про одно из самых нерациональных поведений иммунной системы. Ситуация: глаз повреждён до разрыва оболочек (например, осколок стекла вошёл). Иммунная система вообще не знает, что в организме есть глаз, устроена она так. Но когда склера разрывается, в кровь начинает попадать пигментный эпителий сетчатки и прочие белки. С точки зрения иммунной системы — это всё вообще детали не от нашего организма. Иммунитет начинает их убирать. Но он умный, и иногда даже слишком — довольно быстро находится целый орган, который состоит из таких же белков, а значит, «вредит» организму. Это глаз. И начинается крестовый поход против него. Но, повторюсь, иммунная система умная. Она же находит второй такой же орган — и на всякий случай атакует и его. Причём изменения в здоровом глазу могут начаться через 3 и более недели после повреждения первого. Поэтому при травмах, тяжёлых увеитах и эндофтальмитах мы наблюдаем пациента регулярно, смотрим антитела, чтобы не пропустить момент.

Вот как-то так. Теперь по анекдоту «твои глаза, как призывники: один косит, а второй голубой» вы сможете примерно поставить диагноз. Только не лечите, несите пациента в больницу.

Будьте здоровы!

Источник