Виды фоторецепторов сетчатки глаза

Фоторецепторы — светочувствительные сенсорные нейроны сетчатки глаза. Фоторецепторы содержатся во внешнем зернистом слое сетчатки. Фоторецепторы отвечают (а не , как другие нейроны) в ответ на адекватный этим рецепторам сигнал — свет. Фоторецепторы размещаются в сетчатке очень плотно, в виде шестиугольников (гексагональная упаковка)[1][2][3][4].

Классификация фоторецепторов[править | править код]

Maurolicus muelleri

К фоторецепторам в сетчатке глаза человека относятся 3 вида колбочек (каждый тип возбуждается светом определённой длины волны), которые отвечают за цветное зрение, и один вид палочек, который отвечает за сумеречное зрение. В сетчатке глаза человека насчитывается 110 ÷ 125 млн палочек и 4 ÷ 7 млн колбочек[5].

У глубоководной морской рыбы Maurolicus muelleri[en] фоторецепторы дополнены «палочковидными колбочками» («палочкоколбочками», англ. rod-like cones), объединяющими свойства палочек и колбочек и предназначенные для острого зрения при умеренном освещении[6][7].

Сравнение палочек и колбочек[править | править код]

Таблица, иллюстрирующая различия между палочками и колбочками (по книге Эрика Канделя «Принципы науки о нейронах»[8])

ПалочкиКолбочки
Используются для ночного зрения (в условиях слабой освещенности)Используются для дневного зрения (в условиях высокой освещенности)
Высокочувствительны; воспринимают и рассеянный светНе очень чувствительны к свету; реагируют только на прямой свет
Повреждение вызывает никталопию (гемералопию)Повреждение вызывает слепоту, дневную слепоту, ахроматопсию
Низкая острота зренияВысокая острота зрения; лучшее пространственное разрешение
Нет в центральной ямкеСосредоточены в центральной ямке
Замедленная реакция на светБыстрая реакция на свет, могут воспринимать более быстрые изменения у раздражителя
Имеют больше пигмента, чем колбочкиИмеют меньше пигмента
Мембранные диски не привязаны непосредственно к клеточной мембранеМембранные диски крепятся к наружной мембране
В 20 раз больше, чем колбочек, по количеству.
Один тип фоточувствительного пигментаТри типа фоточувствительных пигментов у человека
Ср. Ахроматическое зрение Ср. Цветное зрение

Связи между фоторецепторами[править | править код]

У позвоночных животных существуют горизонтальные связи между однотипными фоторецепторами (например, между колбочками с одинаковой чувствительностью), а в некоторых случаях — и между рецепторами разного типа[9][10][11]. В сетчатке приматов связей между палочками не обнаружено[12]. Несмотря на это, фоторецепторы на их освещение отвечают так, будто между ними есть связи. При освещении одного рецептора происходит его гиперполяризация. Если бы не было связей между фоторецепторами, то такое воздействие давало бы единственный отреагировавший фоторецептор сетчатки человека. Однако, опыты показывают, что соседние рецепторы тоже гиперполяризируются. Вероятное объяснение этого парадокса состоит в том, что колбочки центральной ямки расположены очень плотно, и изменение мембранного потенциала одного фоторецептора перетекает на соседние.

См. также[править | править код]

  • Глазки Гессе

Примечания[править | править код]

  1. ↑ Хьюбел Д. Глаз, мозг, зрение. — М.: Мир, 1990. — 240 с.
  2. ↑ Меденников П. А., Павлов Н. Н. Гексагональная пирамида как модель структурной организации зрительной системы // Сенсорные системы. — 1992. — т.6 № 2 — с.78-83.
  3. ↑ Лебедев Д. С., Бызов А. Л. Электрические связи между фоторецепторами способствуют выделению протяженных границ между разнояркими полями // Сенсорные системы. — 1988. — т.12, № 3. — с. 329—342.
  4. ↑ Watson A. B., Ahumada A. J. A hexahonal orthogonal-oriented pyramid as a model of image representation in visual cortex// IEEE Transactions on Biomedical Engineering. — Vol. 36, № 1 — pp.97-106.
  5. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с.
  6. de Busserolles F. et al. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides : [англ.] // Science Advances. — 2017. — Vol. 3, no. 11. — P. 1—12 (eaao4709). — doi:10.1126/sciadv.aao4709.
  7. ↑ У глубоководной рыбки нашли новый тип зрительных рецепторов — «палочкоколбочки», Индикатор. Дата обращения 14 декабря 2017.
  8. Kandel, E. R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science (неопр.). — 4th. — New York: McGraw-Hill Education, 2000. — С. 507—513. — ISBN 0-8385-7701-6.
  9. ↑ Школьник-Яррос Е. Г. , Калинина А. В. Нейроны сетчатки. — М.: Наука, 1986. — 208 с.
  10. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с
  11. ↑ Ноздрачев А. Д. Общий курс физиологии человека и животных. Т.1, — М.: Высшая школа, 1991. −512 с.
  12. ↑ Hoyenga K. B., Hoyenga K. T. Psychobiology: the neuron and behavior. — Western Illinois University.: Brooks/ Cole Publishing Company Pacific Grove, California, 1988.

Ссылки[править | править код]

  • Особенности цветного зрения у различных млекопитающих

Гистология: Нервная ткань

Нейроны
(Серое вещество)
  • Перикарион
  • Аксон
    • Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты
  • Конус роста
  • Аксонный транспорт
  • Валлерова дегенерация
  • Дендрит
    • Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит
  • Дендритная пластичность
  • Дендритный потенциал действия

типы
Биполярные нейроны
Униполярные нейроны
Псевдоуниполярные нейроны
Мультиполярные нейроны
Пирамидальный нейрон
Звёздчатый нейрон
Клетка Пуркинье
Гранулярная клетка
Интернейрон
Клетка Реншоу

Афферентный нерв/
Сенсорный нейрон
  • GSA
  • GVA
  • SSA
  • SVA
  • Нервные волокна
    • Мышечные веретёна (Ia), Нервно-сухожильное веретено (Ib), II или Aβ-волокна, III или Aδ-волокна, IV или C-волокна
Эфферентный нерв/
Моторный нейрон
  • GSE
  • GVE
  • SVE
  • Верхний мотонейрон
  • Нижний мотонейрон
    • α мотонейроны, γ мотонейроны
Синапс
  • Химический синапс
  • Нервно-мышечный синапс
  • Эфапс (Электрический синапс)
  • Нейропиль
  • Синаптический пузырёк
Сенсорный рецептор
  • Тельце Мейснера
  • Тельце Меркеля
  • Тельце Пачини
  • Тельце Руффини
  • Нервно-мышечное веретено
  • Свободное нервное окончание
  • Обонятельный нейрон
  • Фоторецепторные клетки
  • Волосковые клетки
  • Вкусовая луковица
Нейроглия
  • Астроциты
    • Радиальная глия
  • Олигодендроциты
  • Клетки эпендимы
    • Танициты
  • Микроглия
Миелин
(Белое вещество)
ЦНС
ОлигодендроцитыПНС
Шванновские клетки
Нейролемма
Перехват Ранвье/Межузловой сегмент
Насечка миелина
Соединительная ткань
  • Эпиневрий
  • Периневрий
  • Эндоневрий
  • Пучки нервных волокон
  • Мозговые оболочки: твёрдая, паутинная, мягкая

Источник

Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов — палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками. Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов и затем синаптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует

Читайте также:  Сколько лежать после операции отслоения сетчатки

в ее анализе и переработке. Таким образом, сетчатка является как бы частью мозга, вынесенной на периферию.

Пигментный слой сетчатки.Наружный слой сетчатки образован пигментным эпителием, содержащим пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия.

Пигментные клетки, отростки которых окружают светочувствительные членики палочек и колбочек, принимают участие в обмене веществ в фоторецепторах и в синтезе зрительного пигмента.

Фоторецепторы.К слою пигментного эпителия изнутри примыкает слой фоторецепторов, которые своими светочувствительными члениками обращены в сторону, противоположную свету.

Каждый фоторецептор — палочка или колбочка — состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке. У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют

в условиях яркой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения. Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках, в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цветов, то в сумерках человек цвета не различает. Нарушение функций палочек, возникающее, например, при недостатке в пище витамина А, вызывает расстройство сумеречного зрения, так называемую куриную слепоту: человек совершенно

слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении колбочек возникает светобоязнь: человек видит только при слабом свете и слепнет при ярком освещении. В этом случае может развиться и полная слепота на цвета — ахромазия.

Слепое пятно.Место входа зрительного нерва в глазное яблоко — сосок зрительного нерва — не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно.

Нейроны сетчатки.Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток. Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, передается на волокна зрительного нерва через нервные клетки — биполярные и ганглиозные. В синапсах между биполярными и ганглиозными клетками выявлена холинэстераза; это служит указанием на то, что передача импульса с одной клетки на другую совершается с помощью медиатора ацетилхолина. На 130 млн. фоторецепторных клеток приходится всего около 1 млн. 250 тыс. волокон зрительного нерва, являющихся отростками ганглиозных клеток. Это значит, что импульсы от многих фоторецепторов конвергируют к одной ганглиозной клетке. Один биполярный нейрон связан со многими палочками и несколькими колбочками, а одна ганглиозная клетка в свою очередь связана со многими биполярными клетками. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Взаимодействие соседних нейронов сетчатки обеспечивается так называемыми горизонтальными и амакриновыми клетками, отростки которых соединяют по горизонтали биполярные и ганглиозные клетки. Амакриновые клетки осуществляют процесс горизонтального, или бокового торможения между соседними элементами. Кроме афферентных волокон, в сетчатке имеются и центробежные, или эфферентные, нервные волокна, приносящие к ней импульсы из ЦНС. Полагают, что эти импульсы действуют на синапсы между биполярными и ганглиозными клетками сетчатки и тем самым регулируют проведение возбуждения между ними. Второй тип центробежных нервных волокон представляет собой сосудодвигательные волокна, изменяющие кровоснабжение сетчатки.

Читайте также:  Лечение сетчатки в симферополе

Источник

Краткое описание: 

Сазонов В.Ф. Фоторецепторы и фоторецепция [Электронный ресурс] // Кинезиолог, 2009-2016: [сайт]. Дата обновления: 19.03.2016. URL: https://kineziolog.su/content/fotoretseptory-i-fotoretseptsiya (дата обращения: __.__.201_).
_Описаны три вида фоторецепторов сетчатки глаза: палочки, колбочки и пигментосодержащие ганглиозные клетки.

Рецепторный отдел зрительного анализатора 

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов только двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки: 1) палочках, 2) колбочках и 3) пигментсодержащих ганглиозных клетках.

Сенсорные рецепторы сетчатки

  1. Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин.

  2. Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками). Причём они, можно сказать, неприлично развёрнуты к свету тылом.Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

Третий тип фоторецепторов: ганглиозная клетка, содержащая фотопигмент.

      3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС), или же intrinsically photosensitive retinal ganglion cells  (ipRGCs): их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин, который сильно отличается от родопсина палочек и йодопсина колбочек. Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями (смотри подробнее тут: Эпифиз ).

 В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А. Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.

Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

  1. «Синие» (коротковолновые — S) — 430-470 нм. Их 2% от общего числа колбочек.

  2. «Зелёные» (средневолновые — M) – 500-530 нм. Их 32%.

  3. «Красные» (длинноволновые — L) – 620-760 нм. Их 64%.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента. В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.

Йодопсин – пигмент красных колбочек. Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.

Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин. Он поглощает свет и обеспечивает чёткость зрительного восприятия.

Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.

Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние. Образно говоря, от воздействия света палочки и колбочки «падают в обморок»!

 Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к фотоповреждению связана со следующими факторами:
1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.
Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987). Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.

Читайте также:  Как лечат ангиопатию сетчатки глаза

Можно к этому добавить, что фоторецепторные клетки как бы «прячутся» от света, располагаясь как можно дальше от зрачка на периферии глазного яблока и сетчатки, да к тому же разворачиваются к свету не фоточувствительной, а, наоборот, своей тыльной стороной.

Видео: Световые иллюзии

Источник

Меня больше всего восхищает, пожалуй, хрусталик. Для того чтобы наводить изображение на резкость, эволюция изобрела прозрачную эластичную линзу, и эта линза состоит из живых клеток. Такой как бы подвиг — создать прозрачные живые клетки. Чтобы это случилось, возник специальный белок, который называется кристаллин. У него совершенно потрясающая первичная, вторичная, третичная структура. В итоге возникает что-то вроде кристаллов, способных проводить электромагнитные волны без особой задержки.

Кристаллин в ходе эволюции формируется достаточно рано, а потом остается очень стабильным, консервативным, потому что эволюция довела его уже до такого идеала, что даже небольшие изменения ухудшают проведение света. Именно поэтому на основе кристаллина были в свое время построены первые филогенетические деревья млекопитающих. То есть мы берем кристаллин человека, макаки, крысы, сравниваем их между собой и видим, что различия в первичной структуре минимальны. То есть буквально две, три, пять мутаций. А поскольку мутация в кристаллине не портит его свойства, возникает достаточно редко — один раз в 3–4 миллиона лет, — то отличие человека от макаки в три мутации означает, что мы разошлись с нашими обезьяноподобными предками 10–12 миллионов лет назад. А от крысы отличие в восемь мутаций, значит, расхождение случилось 30 миллионов лет назад. В 90-е годы прошлого века это были новые и впечатляющие факты, которые позволили понять, что эволюция — это не только появление пятен на шкуре жирафа или удлинение его шеи, но это молекулярная эволюция, когда по изучению строения белка или, например, рибосомальной РНК вы можете увидеть, как одни организмы происходят от других.

Фоторецепторы внутри глаза человека делятся на две группы — палочки и колбочки. Сам термин достаточно старый, из XIX века, когда под микроскопом увидели форму этих клеток. Палочки — это цилиндрические клетки, а колбочки больше похожи на конус. И у палочки, и у колбочки есть центральная часть — зона, где находится ядро. Есть та часть, которая повернута в сторону хрусталика, и там располагается пресинаптическое окончание, которое контактирует с нейронами сетчатки. И есть часть, которая обернута в сторону сосудистой оболочки, и там располагаются светочувствительные пигменты.

Светочувствительные пигменты — это ключевая конструкция внутри фоторецептора, то есть это те самые молекулы, которые реагируют на электромагнитные волны. И для того, чтобы это делать, внутрь светочувствительных пигментов вставлена особая молекула, которая называется ретиналь. Ретиналь — это трансформированный ретинол, то есть витамин А. И все знают, что морковка ужасно полезна для зрения, потому что там есть что-то такое, от чего наши фоторецепторы работают лучше. В морковке находится оранжевый пигмент под названием каротин, и когда мы съедаем каротин, то он у нас в организме превращается в ретинол и встраивается внутрь палочек и колбочек.

Нужно понимать саму идею витамина. Это незаменимые вещества, которые нам необходимы, но которые мы сами делать не можем и должны откуда-то получать, — как правило, из растительных источников. Зачем растениям каротин? Он играет роль вспомогательного светочувствительного пигмента. Растения зеленые, и это значит, что их хлорофилл реагирует на красный диапазон спектра, на синий диапазон спектра, поглощает эту энергию. А зеленая часть диапазона теряется, отражается от листьев, поэтому мы видим листья зелеными. Выходит, что примерно третья часть энергии теряется. Поэтому возникает идея: а давайте мы сделаем пигмент, который бы все-таки ловил зеленые лучи и помогал хлорофиллу. Так появляется каротин — оранжевый, оранжево-красный, и это значит, что он поглощает синие и зеленые лучи. Поглощая зеленую часть спектра, он помогает хлорофиллу.

Что получается с витамином А? Наша эволюция, эволюция животных, не смогла изобрести молекулу, которая ловит электромагнитные волны. Поэтому для того, чтобы заработали наши фоторецепторы, мы должны съесть растение, извлечь каротин, превратить его в ретинол и вставить внутрь палочек-колбочек. И только тогда мы начинаем видеть. Мы, животные, настолько зависимы от растений, что даже зрение опирается на те молекулы, которые мы от них получаем. Это общая логика, она распространяется практически на все витамины. Все знают, что каротин полезен для здоровья и наш организм к нему очень трепетно относится. Ретинол запасается в печени и по мере необходимости идет на то, чтобы синтезировать дополнительные новые светочувствительные пигменты.

Пигмент палочек называется родопсин, а пигменты колбочек — йодопсин. И палочки все одинаковы, и родопсин одинаков. Один тип родопсина присутствует внутри нашего глаза. А что касается йодопсинов (английский вариант — конопсины), их три типа. Как известно, наши колбочки и наши йодопсины — это три класса, каждый из которых реагирует либо на красные лучи, красный диапазон спектра, либо на зеленый диапазон, либо на синий диапазон. Поэтому и о йодопсинах, и о колбочках говорят, что они делятся на красночувствительные, синечувствительные и зеленочувствительные.

Источник