Узнать все о сетчатке глаза
Аутентификация по радужной оболочке глаза — одна из биометрических технологий, используемая для проверки подлинности личности.
Детальное изображение радужной оболочки
Тип биометрической технологии, который рассматривается в данной статье, использует физиологический параметр — уникальность радужной оболочки глаза. На данный момент этот тип является одним из наиболее эффективных способов для идентификации и дальнейшей аутентификации личности [1].
История[править | править код]
Несмотря на то, что биометрические технологии (в частности, использование радужной оболочки глаза для идентификации человека) только начинают набирать популярность, первые открытия в этой области были совершены ещё в конце тридцатых годов прошлого века.
- Первым о том, что человеческий глаз и его радужную оболочку можно использовать для распознавания личности, задумался американский глазной хирург, Франк Бурш, ещё в 1936 году [2] .
- Но его идею и разработки удалось запатентовать только в 1987 году. Сделал это уже не сам Бурш, а офтальмологи, не имеющие собственных разработок — Леонард Флом и Аран Сафир[2].
- В 1989 году Л. Флом и А. Сафир решили обратиться за помощью к Джону Даугману, для того, чтобы тот разработал теорию и алгоритмы распознавания. Впоследствии, именно Джона Даугмана принято считать родоначальником этого метода биометрической аутентификации [2].
- В 1990 году Джон Даугман впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был немного позже, в 1993 году [2].
- На этом история развития биометрической аутентификации по радужной оболочке не заканчивается. Начиная с 2002 года Даугман выпустил ещё несколько статей, каждая из которых более полно раскрывает и развивает данную технологию. Опубликованные статьи: Epigenetic randomness, complexity, and singularity of human iris patterns (2001), Gabor wavelets and statistical pattern recognition (2002), The importance of being random: Statistical principles of iris recognition (2003), Probing the uniqueness and randomness of IrisCodes: Results from 200 billion iris pair comparisons (2006), New methods in iris recognition (2007), Information Theory and the IrisCode (2015).
Радужная оболочка как биометрический параметр[править | править код]
В данном случае в качестве физиологического параметра рассматривается радужная оболочка — круглая пластинка с хрусталиком в центре, одна из трёх составляющих сосудистой (средней) оболочки глаза.
Строение человеческого глаза
Находится радужная оболочка между роговицей и хрусталиком и выполняет функцию своеобразной естественной диафрагмы, регулирующей поступление света в глаз. Радужная оболочка пигментирована, и именно количество пигмента определяет цвет глаз человека [3] .
По своей структуре радужная оболочка состоит из эластичной материи — трабекулярной сети. Это сетчатое образование, которое сформировывается к концу восьмого месяца беременности. Трабекулярная сеть состоит из углублений, гребенчатых стяжек, борозд, колец, морщин, веснушек, сосудов и других черт. Благодаря такому количеству составляющих «узор» сети довольно случаен, что ведёт к большой вероятности уникальности радужной оболочки. Даже у близнецов этот параметр не совпадает полностью [4].
Несмотря на то, что радужная оболочка глаза может менять свой цвет вплоть до полутора лет с момента рождения, узор траберкулярной сети остаётся неизменным в течение всей жизни человека. Исключением считается получение серьёзной травмы и хирургическое вмешательство [4].
Благодаря своему расположению радужная оболочка является довольно защищённой частью органа зрения, что делает её прекрасным биометрическим параметром.
Принцип работы[править | править код]
Большинство работающих в настоящее время систем и технологий идентификации по радужной оболочке глаза основаны на принципах, предложенных Дж. Даугманом в статье «High confidence visual recognition of persons by a test of statistical independence»[5] .
Полярная система координат
Процесс распознавания личности с помощью радужной оболочки глаза можно условно разделить на три основных этапа: получение цифрового изображения, сегментация и параметризация. Ниже будет рассмотрен каждый из этих этапов более подробно.
Получение изображения[править | править код]
Процесс аутентификации начинается с получения детального изображения глаза человека. Изображение для дальнейшего анализа стараются сделать в высоком качестве, но это не обязательно. Радужная оболочка настолько уникальный параметр, что даже нечёткий снимок даст достоверный результат. Для этой цели используют монохромную CCD камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению. Обычно делают серию из нескольких фотографий из-за того, что зрачок чувствителен к свету и постоянно меняет свой размер. Подсветка ненавязчива, а серия снимков делается буквально за несколько секунд. Затем из полученных фотографий выбирают одну или несколько и приступают к сегментации [6].
Сегментация[править | править код]
Сегментация занимается разделением изображения внешней части глаза на отдельные участки (сегменты). В процессе сегментации на полученной фотографии прежде всего находят радужную оболочку, определяют внутреннюю границу (около зрачка) и внешнюю границу (граница со склерой). После этого находят границы верхнего и нижнего века, а также исключают случайное наложение ресниц или блики (от очков, например) [7] .
Точность, с которой определяются границы радужки, даже если они частично скрыты веками, очень важна. Любая неточность в обнаружении, моделировании и дальнейшем представлении радужки могут привести к дальнейшим сбоям и несоответствиям [7].
После определение границ изображение радужки необходимо нормализовать. Это не совсем очевидный, но необходимый шаг, призванный компенсировать изменения размеров зрачка. В частных случаях нормализация представляет собой переход в полярную систему координат. Применил и описал это в своих ранних работах Джон Даугман [5]. После нормализации при помощи псевдо-полярных координат выделенная область изображения переходит в прямоугольник, и происходит оценка радиуса и центра радужки[8].
Параметризация[править | править код]
В ходе параметризации радужной оболочки из нормализованного изображения выделяют контрольную область. К каждой точке выбранной области применяют двухмерные волны Габора (можно применять и другие фильтры, но принцип остаётся таким же) для того, чтобы извлечь фазовую информацию. Несомненным плюсом фазовой составляющей является то, что она, в отличие от амплитудной информации, не зависит от контраста изображения и освещения [9].
Полученная фаза обычно квантуется 2 битами, но можно использовать и другое количество. Итоговая длина описания радужной оболочки, таким образом, зависит от количества точек, в которых находят фазовую информацию, и количества битов, необходимых для кодирования. В итоге мы получаем шаблон радужной оболочки, который побитно будет сверяться с другими шаблонами в процессе аутентификации. Мерой, с помощью которой определяется степень различия двух радужных оболочек, является расстояние Хэмминга[9].
Практическое применение[править | править код]
Некоторые страны уже начали разрабатывать программу, частью которого будет являться биометрическая аутентификация по радужной оболочке глаза. Планируется, что с помощью этого нововведения будет решена проблема поддельных паспортов и других удостоверений личности. Второй целью является автоматизация прохождения паспортного контроля и таможенного досмотра при въезде в страну с помощью биометрических паспортов[10].
В Великобритании с 2004 года действовал не менее сложный по реализации проект — IRIS (Iris Recognition Immigration System). В рамках этой программы около миллиона туристов из-за рубежа, часто путешествующие в Великобританию, могли не предоставлять свои документы в аэропортах для удостоверения личности. Вместо этого специальная видеокамера сверяла их радужную оболочку глаза с уже сформированной базой. В 2013 году от этого проекта отказались в пользу биометрических паспортов, куда заносится информация и о радужной оболочке глаза [10].
Особенности и отличия от аналогов[править | править код]
Для того, чтобы та или иная характеристика человека была признана биометрическим параметром, она должна соответствовать пяти специально разработанным критериям: всеобщность, уникальность, постоянство, измеряемость и приемлемость.
Всеобщность радужной оболочки не вызывает сомнения. Также из клинических исследований выявлена её уникальность и стабильность [11]. Что касается измеряемости, то этот пункт подтверждён одним только существованием статей и публикаций Дж. Даугмана [5][12][13]. Последний пункт, вопрос о приемлемости, всегда будет открытым, так как зависит от мнения общества.
Таблица сравнения биометрических методов аутентификации, где H — High, M — Medium, L — Low [14]:
Название | Всеобщность | Уникальность | Постоянство | Измеряемость | Приемлемость |
---|---|---|---|---|---|
Радужная оболочка | H | H | H | M | L |
Сетчатка | H | H | M | L | L |
Отпечатки пальцев | M | H | H | M | M |
На данный момент ещё не создана биометрическая технология, которая полностью соответствовала бы всем пяти пунктам. Но радужная оболочка является одним из немногих параметров, которые отвечают большинству[15].
Точность метода[править | править код]
В биометрии при расчёте точности метода учитываются ошибки первого и второго рода (FAR и FRR) [16].
FAR (False Acceptance Rate) — вероятность ложного допуска объекта.
FRR (False Rejection Rate) — вероятность ложного отклонения объекта.
Эти два понятия тесно связаны, так как уменьшение одной ошибки ведёт к увеличению другой. Поэтому разработчики биометрических систем стараются прийти к некому балансу между FAR и FRR [17].
Одним из методов определения точности системы, который задействует ошибки первого и второго рода, является метод построения ROC-кривой.
ROC-кривая — это графическое представления зависимости между характеристиками FAR и FRR при варьировании порога чувствительности (threshhold) [18]. Порог чувствительности определяет, как близко должен находиться текущий образец к шаблону, чтобы считать их совпадающими. Таким образом, если выбран небольшой порог, то возрастает количество ложных допусков, но уменьшается вероятность ложного отклонения объекта. Соответственно, при выборе высокого порога всё происходит наоборот [17].
Иногда вводят новый параметр – EER.
EER (Equal Error Rate) — величина, которая характеризует уровень ошибок биометрического метода, при котором значения FAR и FRR равны . Чем меньше этот параметр, тем точнее система. Значение ERR узнают с помощью выше описанной ROC-кривой [19].
Что касается точности, непосредственно, аутентификации по радужной оболочке, то хорошим источник служит книга «Handbook of Iris Recognition». В данной работе описан эксперимент, в котором сравнивали несколько видов биометрических технологий. Исходя из этих исследований, точность аутентификации по радужной оболочке достигает 90% [20].
В ходе другой работы, выяснили, что значение FAR данного метода при определённых условиях может принимать значения от 1% и ниже, а значение FRR неизменно и стремится к нулю (0.00001%) [21].
В свою очередь, значения FAR и FRR непосредственно зависят от процессов получения и обработки изображения радужной оболочки. Большую роль в этом играют фильтры, применяемые в процессе сегментации. Из таблицы, которая представлена ниже, можно увидеть, как смена одного фильтра влияет на конечный результат [22].
Таблица параметров FAR(%), FRR(%) и EER(%) в зависимости от выбора фильтра[22]:
Название | FAR(%) | FRR(%) | EER(%) |
---|---|---|---|
Фильтр Габора (Gabor) | 0.001 | 0.12 | 0.11 |
Фильтр Добеши (Daubechies) | 0.001 | 2.98 | 0.2687 |
Фильтр Хаара (Haar) | 0.0 | 17.75 | 2.9 |
Сравнение с аутентификацией по сетчатке[править | править код]
Чаще всего люди путают такие физиологические параметры, как сетчатка и радужная оболочка глаза. Ещё чаще они объединяют два понятия в одно. Это огромное заблуждение, так как метод аутентификации по сетчатке включает в себя изучение глазного дна. Из-за длительности этого процесса и большого размера установки данный вид аутентификации сложно назвать общедоступным и удобным. В этом биометрическая аутентификация по сетчатке проигрывает аутентификации по радужной оболочке[23].
Примечания[править | править код]
- ↑ Р. М. Болл и др., 2007, p. 23: «Эти биометрические параметры считаются наиболее совершенными, и ожидается, что в скором времени они будут широко применяться.».
- ↑ 1 2 3 4 Khalid Saeed et al, 2012, p. 44.
- ↑ Алексеев В.Н. и др., 2008, p. 18.
- ↑ 1 2 Anil Jain et al, 2006, p. 105 — 106.
- ↑ 1 2 3 J. Daugman, 1993.
- ↑ Anil Jain et al, 2011, p. 144.
- ↑ 1 2 J. Daugman, 2007, p. 1167.
- ↑ Khalid Saeed et al, 2012, p. 52 — 53.
- ↑ 1 2 J. Daugman, 2004, p. 22 — 23.
- ↑ 1 2 J. Daugman, 2007, january, p. 1927.
- ↑ Р. М. Болл и др., 2007, p. 60.
- ↑ J. Daugman, 2004.
- ↑ J. Daugman, 2007.
- ↑ Anil Jain et al, 2004.
- ↑ Р. М. Болл и др., 2007, p. 22.
- ↑ Rajesh M. et al, 2014, p. 3.
- ↑ 1 2 Anil Jain et al, 2004, p. 6.
- ↑ A. J. Mansfield et al, 2002, p. 7 — 8.
- ↑ Rajesh M. et al, 2014, p. 5.
- ↑ Mark J. Burge et al, 2013.
- ↑ Dr. Chander Kant et al, 2011.
- ↑ 1 2 José Ruiz-Shulcloper et al, 2008, p. 91 — 92.
- ↑ Р. М. Болл и др., 2007, p. 23.
Литература[править | править код]
- L. Flom, A. Safir US Patent 4641349
- Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 20 — 63. — 368 с. — ISBN 978-5-94836-109-3.
- Khalid Saeed, Tomomasa Nagashima. Chapter 3. Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection // Biometrics and Kansei Engineering. — Springer Science & Business Media, 2012. — P. 43 — 65. — 276 p. — ISBN 978-1-461-45607-0.
- Anil Jain, Arun A. Ross, Karthik Nandakumar. Chapter 4 Iris Recognition // Introduction to Biometrics.. — Springer Science & Business Media, 2011. — P. 141-175. — 276 p. — ISBN 978-0-387-77326-1.
- Rajesh M. Bodade, Sanjay Talbar. Introduction to Iris Recognition // Iris Analysis for Biometric Recognition Systems. — Springer, 2014. — P. 3 — 5. — 109 p. — ISBN 978-8-132-21853-1.
- Anil Jain, Ruud Bolle, Sharath Pankanti. Recognising Persons by Their Iris Patterns // Biometrics: Personal Identification in Networked Society. — Springer Science & Business Media, 2006. — P. 102 — 122. — 411 p.
- José Ruiz-Shulcloper, Walter Kropatsch. An Alternative Image Representation Model for Iris Recognition // Progress in Pattern Recognition, Image Analysis and Applications. — Springer Science & Business Media, 2008. — P. 86 — 93. — 814 p.
- A. J. Mansfield, J. L. Wayman. Definitions // Best Practices in Testing and Reporting Performance of Biometric Devices: Version 2.01. — Centre for Mathematics and Scientific Computing, National Physical Laboratory, 2002. — P. 7 — 8. — 32 p.
- Mark J. Burge, Kevin Bowyer. Fusion of Face and Iris Biometrics // Handbook of Iris Recognition. — Springer-Verlag London, 2013. — P. 234. — 399 p.
- J. Daugman. High confidence visual recognition of persons by a test of statistical independence (англ.) // IEEE Transactions on Pattern Analysis and Machine Intelligence. — 1993. — Vol. 15, no. 11. — P. 1148 — 1161.
- J. Daugman. How iris recognition works (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 21 — 30.
- J. Daugman. New Methods in Iris Recognition (англ.) // IEEE Trans. Systems, Man, and Cybernetics. — 2007. — Vol. 37, no. 5. — P. 1167 — 1175.
- J. Daugman. Probing the Uniqueness and Randomness of IrisCodes: Results From 200 Billion Iris Pair Comparisons (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2007, january. — Vol. 94, no. 11. — P. 1927 — 1935.
- Anil Jain, Arun Ross and Salil Prabhakar. An Introduction to Biometric Recognition (англ.) // IEEE Transactions on Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 4 — 20.
- Dr. Chander Kant, Sachin Gupta. Iris Recognition: The Safest Biometric (англ.) // An International Journal of Engineering Sciences ISSN. — 2011. — Vol. 4. — P. 265 — 273.
- Алексеев В.Н., Астахов Ю.С., Басинский С.Н. Глава 2. Анатомия органа зрения // Офтальмология: Учебник для студ. мед. вузов / Е.А.Егоров. — М.: ГЭОТАР-Медиа, 2008. — С. 12 — 29. — 240 с.
- Павельева Е. А., Крылов А. С. Алгоритм сравнения изображений радужной оболочки глаза на основе ключевых точек (рус.) // Информатика и её применения. — 2011. — Т. 5, № 1. — С. 68 — 72.
Источник
Сетчатка – самая внутренняя оболочка глаза, являющаяся высокодифференцированной нервной тканью, играющей важнейшую роль в обеспечении зрения.
Сетчатка состоит из десяти слоев, содержащих нейроны, кровеносные сосуды и другие структуры. Уникальность строения сетчатки обеспечивает функционирование зрительного анализатора.
Сетчатка имеет две основные функции: центральное и периферическое зрение. Их осуществление обеспечивается специальными рецепторами – палочками и колбочками. Данные рецепторы трансформируют световые лучи в нервные импульсы, которые далее по зрительному тракту передаются в ЦНС. Благодаря центральному зрению человек может четко видеть объекты, расположенные перед ним на различном расстоянии, читать и выполнять работы на близком расстоянии. Благодаря периферическому зрению человек ориентируется в пространстве. Наличие колбочек трех видов, которые воспринимают различной длины световые волны, обеспечивает восприятие цветов, оттенков.
Строение сетчатки
Сетчатка имеет оптическую область, являющуюся светочувствительной. Данная область распространяется до зубчатой линии. Также имеются нефункциональные зоны: ресничная и радужковая, которые содержат лишь два слоя клеток. В ходе эмбрионального развития сетчатка формируется из той же части нервной трубки, которая дает начало центральной нервной системе. Именно поэтому ее характеризуют как вынесенную на периферию часть мозга.
Слои сетчатки:
- внутренняя пограничная мембрана;
- волокна зрительного нерва;
- ганглиозные клетки;
- внутренний плексиформный слой;
- внутренний нуклеарный;
- наружный плексиформный;
- наружный нуклеарный;
- наружная пограничная мембрана;
- слой палочек и колбочек;
- пигментный эпителий.
Основной функцией сетчатки является восприятие света. Это обеспечивается благодаря наличию рецепторов двух типов:
- палочки – около 100-120 миллионов;
- колбочки – около 7 миллионов.
Свое название рецепторы получили благодаря форме.
Существует три вида колбочек, которые содержат по одному пигменту – красный, зеленый, сине-голубой. Именно благодаря этим рецепторам человек различает цвет.
Палочки имеют в составе пигмент родопсин, поглощающий красные лучи спектра. В ночное время преимущественно функционируют палочки, днем – колбочки, в сумерках все фоторецепторы на определенном уровне активны.
Фоторецепторы в различных областях сетчатки распределены неравномерно. Центральная зона сетчатки (фовеа) – это область наибольшей плотности колбочек. Плотность расположения колбочек к периферическим отделам уменьшается. В то же время центральная область не содержит палочек, их наибольшая плотность вокруг центральной зоны, а к периферии плотность несколько уменьшается.
Зрение представляет собой очень сложный процесс, являющийся результатом сочетания возникающих в фоторецепторах реакций под воздействием световых лучей, передачи нервных импульсов в биполярные, ганглиозные нервные клетки, по волокнам зрительного нерва, а также обработки полученной информации в коре головного мозга.
Чем меньше фоторецепторов соединено с последующей за ними биполярной клеткой и далее с ганглиозной клеткой, тем выше зрительная разрешающая способность. В центральной зоне сетчатки (фовеа) одна колбочка соединяется с двумя ганглиозными клетками, в отличие от этого в периферических зонах множество рецепторных клеток соединены с небольшим количеством биполярных клеток, малым количеством ганглиозных клеток, передающих импульсы по аксонам в головной мозг. Следовательно, область макулы, где концентрация колбочек высокая, характеризуется качественным зрением, при этом палочки периферических отделов обеспечивают периферическое зрение, менее четкое.
Сетчатка содержит два типа нервных клеток:
- горизонтальные – располагаются в наружном плексиформном слое;
- амакриновые – находятся во внутреннем плексиформном слое.
Эти два типа нейронов обеспечивают взаимосвязь между всеми нервными клетками сетчатки.
В медиальной половине сетчатки (ближе к носу) приблизительно в 4 миллиметрах от центральной зоны расположен диск зрительного нерва. Эта область полностью лишена светочувствительных рецепторов, поэтому в месте ее проекции в поле зрения определяется слепая зона.
Сетчатка имеет разную толщину на различных участках. Наиболее тонкая часть сетчатки находится в центральной зоне – фовеа, которая обеспечивает наиболее четкое зрение, самая толстая часть – в зоне диска зрительного нерва.
Сетчатка прилежит к сосудистой оболочке и прочно крепится к ней только вдоль зубчатой линии, по периферии макулярной области и вокруг зрительного нерва. Все остальные области характеризуются рыхлым соединением сетчатки и сосудистой оболочки, и в этих зонах наиболее вероятна отслойка сетчатки.
Трофика сетчатки обеспечивается за счет двух источников: внутренние шесть слоев получают питание из системы центральной артерии сетчатки, наружные четыре – непосредственно из сосудистой оболочки (ее хориокапиллярного слоя). Сетчатка не имеет чувствительных нервных окончаний, поэтому патологические процессы сетчатки не сопровождаются болью.
Видео о строении сетчатки глаза
Диагностика патологии сетчатки
Для исследования функционального состояния сетчатки и ее структуры применяются следующие методы:
- визометрия (исследование остроты зрения);
- диагностика цветоощущения, цветовых порогов;
- более тонкой методикой исследования макулярной области является определение контрастной чувствительности;
- периметрия – исследование полей зрения с целью выявления выпадений;
- офтальмоскопия;
- электрофизиологические диагностические методы;
- с целью определения структурных изменений сетчатки применяется оптическая когерентная томография (ОКТ);
- диагностика сосудистых изменений проводится путем флюоресцентной ангиографии;
- для регистрации изменений глазного дна с целью их контроля в динамике используется фотографирование глазного дна.
Симптомы поражения сетчатки
При повреждении сетчатки основным симптомом является снижение остроты зрения. Локализация очага поражения в центральной зоне сетчатки характеризуется существенным снижением зрения, возможна полная его потеря. Поражение периферических отделов может протекать без ухудшения зрения, что усложняет своевременную диагностику. Длительно такие заболевания могут протекать бессимптомно, часто выявляются только при диагностике периферического зрения. Обширное поражение периферического отдела сетчатки сопровождается выпадением участка поля зрения, снижением ориентировки при плохой освещенности (гемералопия), изменением цветовосприятия. Отслойка сетчатки характеризуется появлением вспышек и молний в глазу, искажений зрения. Частой жалобой также является появление черных точек, пелены перед глазами.
Болезни сетчатки
Заболевания сетчатки могут иметь врожденный или приобретенный характер.
Врожденные заболевания:
- колобома сетчатки;
- миелиновые волокна сетчатки;
- альбинотическое глазное дно.
Приобретенные заболевания сетчатки:
- воспалительные процессы (ретиниты);
- ретиношизис;
- отслойка сетчатки;
- патология кровотока в сосудах сетчатки;
- берлиновское помутнение сетчатки (вследствие травмы);
- ретинопатия – повреждение сетчатки при общих заболеваниях (артериальной гипертензии, сахарном диабете, заболеваниях крови);
- очаговая пигментация сетчатки;
- кровоизлияния (интраретинальные, преретинальные, субретинальные);
- опухоли сетчатки;
- факоматозы.
Источник