Светочувствительные клетки в сетчатке
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.
Запрос «Ретина» перенаправляет сюда; о названии особого вида ЖК-дисплеев см. Retina.
Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.
Строение[править | править код]
Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.
Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:
- пигментного,
- фотосенсорного,
- наружной пограничной мембраны,
- наружного зернистого слоя,
- наружного сплетениевидного слоя,
- внутреннего зернистого слоя,
- внутреннего сплетениевидного слоя,
- ганглионарных клеток,
- слоя волокон зрительного нерва,
- внутренней пограничной мембраны.
Строение сетчатки человека[править | править код]
Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.
Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.
Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.
диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.
На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.
Микроскопическое строение[править | править код]
Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено
См. Пигментный эпителий сетчатки
В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.
Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.
Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).
Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.
Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.
Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.
Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.
Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.
Заболевания[править | править код]
Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:
- Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
- Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
- Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
- Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
- Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
- И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
- Ретинобластома — злокачественная опухоль сетчатки.
- Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
- Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.
Литература[править | править код]
- Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.
Примечание[править | править код]
Ссылки[править | править код]
- Строение сетчатки. // Проект «Eyes for me».
Источник
Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки (биполярных, горизонтальных, амакриновых). В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну (пятно Мариотта), собираются в зрительный нерв и направляются в мозг. Аксоны ганглионарных клеток не миелинизированы при прохождении сетчатки, чтобы не препятствовать прохождению света. Далее они покрыты миелиновой оболочкой.
Ганглионарные клетки завершают «трёхнейронную рецепторно-проводящую систему сетчатки»: фоторецептор — биполярный нейрон — ганглионарная клетка.
Функции ганглионарных клеток[править | править код]
Клетки сетчатки связаны между собой сложной сетью возбуждающих, подавляющих и двунаправленных сигнальных связей. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы — биполяры — ганглионарные клетки), так и по латеральным путям (фоторецепторы — горизонтальные клетки — биполяры — амакриновые клетки — ганглионарные клетки).
Рецептивные поля[править | править код]
На одну ганглионарную клетку приходится от одного до сотни биполярных нейронов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от нескольких до нескольких тысяч фоторецепторов. Каждая ганглионарная клетка суммирует сигналы от большого числа фоторецепторов, что повышает световую чувствительность, но уменьшает разрешение. Фоторецепторы, соединенные с одной ганглионарной клеткой, образуют её рецептивное поле. Рецептивные поля ганглионарных клеток подразделяются на простые и сложные. Простые поля — имеют концентрическую структуру, подобно полям биполярных нейронов. Сложные — разделяются на несколько различных функциональных зон. Рецептивные поля могут перестраиваться, адаптируясь к уровню освещённости и характеристикам световых стимулов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от единиц до десятков тысяч фоторецепторов (палочек и колбочек). В свою очередь, один фоторецептор через биполярные нейроны может быть связан с десятками ганглионарных клеток. В среднем на 100 фоторецепторных клеток приходится одна ганглионарная (т.е., их от 1.2 до 1.5 млн). Чем ближе к центральной ямке глаза, тем меньше фоторецепторов приходится на одну ганглионарную клетку. Поэтому у людей слабое периферическое зрение. В районе центральной ямки, наоборот, высокое разрешение, но менее высокая светочувствительность, поскольку здесь каждый фоторецептор (колбочка) соединен с одной биполярной (карликовой) клеткой, которая в свою очередь соединена лишь с одной ганглионарной.
Типы ганглионарных клеток[править | править код]
Существует всего 18 типов ганглионарных клеток сетчатки.
Большинство относится к трем типам:
1. Парвоганглионарные клетки — карликовые клетки (около 80% от числа всех ганглионарных клеток сетчатки), имеющие средний размер тела и маленькое дерево дендритов, входят в карликовый путь (чувствительный путь, ведущий от глаза к четверохолмию) и связаны с парвоцеллюлярными (мелкоклеточными) слоями латеральных коленчатых тел. С этими клетками связывают высокую остроту зрения и цветовое зрение.
2. Магноклетки — (около 10%) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими телами и большим разветвлением дендритов, которые проецируются в крупноклеточные слои латеральных коленчатых тел. Отвечают за востриятие движущихся объектов. Имеют большие рецепторные поля.
3. Кониоцеллюлярные клетки очень мелкие, составляют от 8 до 10% всех ганглионарных клеток сетчатки. Получают сигналы от среднего количества фоторецепторов. Имеют очень большие рецептивные поля. Всегда ON для колбочек синего цвета и OFF для красного и зеленого.
Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отвечают на световое раздражение деполяризацией или гиперполяризацией соответственно. Дендриты клеток с on-центром разветвляются в подуровне а (пигментном эпителии?), с off-центром в подуровне G (ганглионарном слое?) внутреннего сетчатого слоя. Цветовой канал связан с красным, зеленым и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ганглионарных on/off-клеток относится к карликовому пути, то синий тип не относится к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя
Светочувствительные ганглионарные клетки[править | править код]
В 1991 году были открыты особые светочувствительные ганглионарные клетки типа ipRGC (intrinsically photosensitive retinal ganglion cells), или mRGC (melanopsin-containing retinal ganglion cells). Они, в отличие от ранее известных ганглионарных клеток, содержат светочувствительный пигмент меланопсин, отличающийся от других фоточувствительных пигментов глаза: родопсина палочек и йодопсина колбочек. И этим они отличаются от других ганглионарных клеток, находящихся в сетчатке глаза, которые не умеют реагировать непосредственно на свет.
Эти светочувствительные ганглионарные клетки — новый, третий тип фоторецепторов сетчатки глаза, помимо известных уже в течение 200 лет палочек и колбочек. Они напрямую возбуждаются под действием света даже при блокировании «классических» фоторецепторов глаза — палочек и колбочек.
Нервные пути от этих ганглиозных (ганглионарных) клеток ведут порождённое в них светом возбуждение от сетчатки к гипоталамусу тремя разными путями, обеспечивая световое управление циркадными ритмами, а также по отдельному нервному пути обеспечивают реакцию сужения зрачка на свет.
Литература[править | править код]
- Ноздрачёв А. Д., Баженов Ю. И., Баранникова И. А., Батуев А. С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А. Д. Ноздрачёва. СПб.: Лань, 2001. 1088 с.
Ссылки[править | править код]
- Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System
- Photosensitive ganglion cells
- Vision beyond image formation: The role of melanopsin cells in regulating mammalian physiology
- Blind Mice Can «See» Thanks To Special Retinal Cells
- Фоторецепторы и фоторецепция
[1]
[2]
[3]
[4]
[5]
Источник
Зрительные проводящие пути имеют важнейшее значение в клинической неврологии. Они проходят от сетчатки глаз до затылочных долей коры головного мозга. Большая протяженность путей обусловливает их особенную уязвимость для деми-елинизирующих заболеваний (рассеянный склероз), опухолей мозга или гипофиза, сосудистых поражений в бассейне средней или задней мозговых артерий или черепно-мозговых травм.
К зрительной системе относят: сетчатки, зрительные проводящие пути от сетчаток к стволу мозга и зрительной коре, а также корковые области, выполняющие высшие зрительные функции. В этой главе описаны только сетчатка и зрительные проводящие пути. Высшие зрительные функции обсуждены в главе 29.
Сечатка и зрительные нервы — части центральной нервной системы. Сетчатка эмбриона формируется из выпячивания диэнцефалона — глазного пузырька. Глазной пузырек образует инвагинацию (хрусталик) и становится двуслойным глазным бокалом.
Наружный слой глазного бокала преобразуется в пигментный эпителий зрелой сетчатки. Внутренний (оптический) слой бокала дает начало нейронам сетчатки.
На рисунке ниже показано общее топографическое строение сетчатки эмбриона. Оптический отдел образован тремя главными слоями нейронов: слоем фоторецепторов, который будет прилежать к пигментному слою клеток после резорбции внутрисетчаточного (интраретиналъного) пространства, слоем биполярных нейронов и слоем ганглиозных клеток, которые дают начало зрительному нерву и достигают таламуса и среднего мозга.
Сетчатка эмбриона.
Зеленым и красным цветом показаны палочки и колбочки соответственно.
Обратите внимание на инвертированное положение сетчатки. Свет должен пройти через слой волокон зрительного нерва, слой ганглиозных клеток и слой биполярных нейронов, чтобы достичь фоторецепторов. «Причина» расположения фоторецепторов, при котором они «максимально удалены» от источника их возбуждения (света или фотонов), обусловлена многими факторами. Во-первых, при таком расположении апикальные концы фоторецепторов (содержащие светочувствительный фотопигмент) расположены напротив пигментного слоя сетчатки, который способен поглощать любой рассеянный свет или свет, не реагирующий с фоторецепторными клетками. Во-вторых, клетки пигментного эпителия сетчатки выполняют фагоцитирующую функцию.
Светочувствительный фотопигмент палочек имеет короткий период полураспада, что требует его постоянного восполнения. Новый фотопигмент продуцируется в основании палочки и перемещается к верхушке клетки, старые апикальные компоненты сбрасываются и фагоцитируются пигментными клетками сетчатки, а белки используются заново (колбочки не сбрасывают). Наконец, фоторецепторные клетки имеют высокий уровень метаболизма и в наиболее глубоком отделе сетчатки они располагаются ближе всего к капиллярам сосудистой оболочки (лежащим под пигментным эпителием), обеспечивающим их питание.
В точке наиболее острого зрения — ямочке (фовеоле) — слои биполярных и ганглиозных клеток огибают центральную ямку (фовеа), и свет проходит к фоторецепторам с минимальным рассеянием (см. ниже «Специализация центральной ямки»). Центральная ямка зрелого глаза имеет диаметр около 1,5 мм и расположена в центре желтого пятна (macula lutea) шириной 5 мм, множество фоторецепторов которого содержат желтый пигмент. Центральная ямка — область наиболее острого зрения — расположена на зрительной оси—линии, проведен ной от центра зрительного поля глаза через центр хрусталика к центральной ямке. Для фиксации, или фовеации, объекта взгляд направляют точно на него, чтобы свет, отраженный от центра объекта, зафиксировался на центральной ямке.
Аксоны ганглиозных клеток входят в зрительный нерв через головку зрительного нерва (сосок зрительного нерва), лишенную нейронов сетчатки и образующую физиологическое слепое пятно.
Зрительные поля глаз перекрывают друг друга в двух третях общего поля зрения. Кнаружи от этого бинокулярного поля зрения с каждой стороны расположено монокулярное (височное) серповидное поле зрения. При прохождении через зрачок формируется перевернутое изображение, поэтому объекты в левой половине бинокулярного поля зрения проецируются на правую половину каждой сетчатки, а объекты в верхней части зрительного поля — на нижнюю половину. Такое расположение сохраняется на всем протяжении до зрительной коры затылочной доли.
С клинической точки зрения необходимо учитывать, что зрение—это перекрестное чувство. Зрительное поле с одной стороны зрительной оси регистрируется на зрительной коре противоположной стороны. В сущности, правая зрительная кора «видит левое поле зрения» или пространство, и наоборот. Только половина зрительной информации от каждой сетчатки пересекает зрительный перекрест по той простой причине, что другая половина уже пересекла среднюю линию.
Дефекты поля зрения, обусловленные поражением зрительных проводящих путей, всегда описывают с точки зрения пациента, т.е. в отношении полей зрения, а не в отношении топографии сетчатки.
Строение сетчатки. Помимо расположенных рядами фоторецепторных клеток, биполярных и ганглиозных клеток, показанных на рисунке ниже, в сетчатке находятся также две группы поперечно расположенных нейронов: горизонтальные клетки и амакриновые клетки. Все восемь слоев сетчатки составляют единое целое.
Поперечный срез правого глаза, показана зрительная ось.
Ганглиозные клетки генерируют потенциалы действия, обеспечивающие «необходимую скорость проведения» к таламусу и среднему мозгу. Расстояния между другими клетками очень короткие, поэтому для межклеточного взаимодействия бывает достаточно пассивного электрического заряда (электротонуса) или постепенных изменений мембранного потенциала клетки без образования синаптических контактов и высвобождения нейромедиатора.
1. Фоторецепторы. К фоторецепторным нейронам относят палочки и колбочки.
Палочки функционируют только при сумеречном свете и нечувствительны к цвету (электромагнитное излучение с волнами разной длины). Лишь в небольшом количестве они представлены в наружной части центральной ямки и полностью отсутствуют в ее центре. Колбочки реагируют на яркий свет, восприимчивы к цвету, форме и наиболее многочисленны в центральной ямке (в глазе человека расположено около 130 млн. фоторецепторных клеток; отношение палочек к колбочкам составляет 20:1 во всех отделах за исключением центральной ямки).
Каждая фоторецепторная клетка имеет наружный и внутренний сегменты, а также синаптическое окончание. В наружном сегменте (светочувствительной «органелле») находятся сотни мембранных дисков (у палочек) или мембранных полудисков (в колбочках), в которые упакован зрительный пигмент (родопсин — фотопигмент, поглощающий свет или фотоны и инициирующий каскад молекулярных реакций, приводящий к изменению потенциала фоторецептора и высвобождению нейромедиатора из синаптической области; этот процесс называют фотопреобразованием). Новые диски образуются во внутреннем сегменте палочек и переносятся в наружный сегмент, старые диски удаляются с апикальной области наружного сегмента. Синаптическое окончание контактирует с отростками биполярных и горизонтальных клеток в наружном ретикулярном слое.
Фоторецепторы обладают удивительным свойством гиперполяризации под действием света. В темноте натриевые (Na+) каналы открыты, образуя достаточный положительный электротонус, приводящий к высвобождению нейромедиатора (глутамата) из синаптического окончания к биполярным нейронам. Воздействие света приводит к закрытию натриевых (Na+) каналов, что сопровождается изменением мембранного потенциала фоторецептора, регистрируемого биполярными нейронами. Мри развитии гиперполяризации рецептора высвобождается меньшее количество нейромедиатора, имеющего тормозное действие, а биполярные клетки (и горизонтальные клетки) деполяризуются (возбуждаются). Однако если действие нейромедиатора было бы возбуждающим, происходила бы реполяризация (торможение) данных клеток.
Под действием света происходит гиперполяризация всех палочек, поэтому при высоком уровне освещения их мембранные каналы полностью закрыты, и их вклад в зрение минимален, а зрение обусловлено только функционированием колбочек.
(А) Зрительные поля обоих глаз при фиксации в одной точке. Поле зрения правого глаза окрашено голубым цветом.
(Б) Правое поле зрения. Белая точка обозначает слепое пятно правого глаза.
Слои сетчатки:
(1) Пигментный слой. (2) Фоторецепторный слой.
(3) Наружный ядерный слой. (4) Наружный сетчатый слой.
(5) Внутренний ядерный слой. (6) Внутренний сетчатый слой.
(7) Слой ганглиозных клеток. (8) Слой нервных волокон.
2. Палочковые и колбочковые биполярные нейроны:
— Колбочковые биполярные нейроны. Колбочковые биполярные нейроны бывают двух типов. ON-биполярные нейроны возбуждаются (деполяризуются) под действием света и тормозятся нейромедиатором, высвобождаемым в темноте. Они контактируют с ON-ганглиозными клетками. OFF-биполярные клетки реагируют противоположным образом и образуют контакты с OFF-ганглиозными клетками. Как правило, одна колбочка образует синапс с несколькими колбочковыми биполярными нейронами, однако в центральной ямке их отношение составляет 1:1; каждая контактирует только с одной ганглиозной клеткой.
— Палочковые биполярные нейроны. Палочковые биполярные нейроны активируют ON- и OFF-колбочковые ганглиозные клетки косвенно, через амакриновые клетки Один палочковый биполярный нейрон образует синапсы с 15-30 палочками (дополнительные контакты возникают, если реакция распространяется в более центральные отделы).
3. Горизонтальные клетки. Дендриты горизонтальных клеток образуют контакты с фоторецепторами. От периферических ветвей дендритов берут начало аксоноподобные отростки, создающие тормозные контакты с биполярными нейронами.
Функция горизонтальных клеток — торможение биполярных нейронов кнаружи от непосредственной области возбуждения. Возбужденные биполярные клетки и ганглиозные клетки называют «включенными», а заторможенные — «выключенными».
Схема нервной цепочки сетчатки:
А—амакриновая клетка; К—колбочка; КБ—колбочковый биполярный нейрон;
ГК—ганглиозная клетка; Г—горизонтальная клетка; С—соединение (щелевидный контакт);
П—палочка; ПБ—палочковый биполярный нейрон.
4. Амакриновые клетки. Амакриновые клетки не имеют аксонов. Внешне они напоминают осьминога. Все дендриты отходят с одной стороны клетки. Дендритические ветви контактируют с биполярными нейронами и ганглиозными клетками.
Было выделено более десяти различных морфологических типов амакриновых клеток, а также несколько их нейромедиаторов: ацетилхолин, дофамин, серотонин. К возможным функциям этих клеток относят повышение контрастности и регистрацию движений. Амакриновые клетки преобразуют большое количество палочек из OFF в ON в соответствии с типом ганглиозной клетки.
5. Ганглиозные клетки. Ганглиозные клетки образуют синаптические контакты с их биполярными нейронами во внутреннем сетчатом слое. Типичный ответ ганглиозных клеток на возбуждение биполярных нейронов — «от центра к периферии». К центру рецептивного поля относят прямые контакты ганглиозных клеток с фоторецепторами; периферией рецептивного поля считают соединения с прилежащими фоторецепторами через горизонтальные клетки. ON-ганглиозная клетка возбуждается пучком света и тормозится окружающим кольцом света. Торможение осуществляют горизонтальные клетки. OFF-ганглиозная клетка действует по обратному принципу.
— Кодирование цвета. Существует три типа колбочковых фоторецепторов, отличающихся спектральной чувствительностью.
Первый тип фоторецепторов чувствителен к красному цвету (их также называют L-колбочками, так как они регистрируют свет с большей длиной волны — Long), второй тип — к зеленому (М-колбочки), третий—к голубому (их также обозначают как S-колбочки, они составляют приблизительно 5-10 % общего количества колбочек). Чувствительность зависит от строения зрительного пигмента в каждом из типов клеток. Максимальная стимуляция каждого типа колбочек определяет длина волны, однако они отвечают на весьма широкий спектр длин волн, и все три типа колбочек частично дублируют друг друга. Определение цвета зависит не только от типа колбочек, а обусловлено сравнительной активностью различных типов колбочек на определенную длину волны. Группы клеток каждого типа контактируют с ON- или OFF-ганглиозными клетками (обработка цветовой информации начинается в сетчатке и продолжается в латеральном коленчатом ядре и коре полушарий).
Характерная реакция ганглиозных клеток — цветовое противодействие (один цвет возбуждает группу колбочек и их ганглиозную клетку, тогда как «противоположный» цвет тормозит их или их можно рассматривать как взаимно исключающие).
• Ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для красного, а ганглиозные клетки, «включенные» для красного цвета, «выключены» для зеленого.
• Ганглиозные клетки, «включенные» для синего цвета, «выключены» для желтого, ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для желтого.
• Наконец, аналогичный механизм справедлив для черного и белого цветов, а также для яркости изображения.
— Кодирование черного и белого. Белый цвет — это сочетание зеленого, красного и синего. При ярком освещении его кодируют три типа колбочек, взаимодействующих с общей ганглиозной клеткой. ON- и OFF-ганглиозные клетки участвуют в процессах как черно-белого, так и цветового зрения.
В глубоких сумерках, например при свете звезд, активны только палочковые фоторецепторы, и объекты видны в различных оттенках серого. Палочки подчиняются тем же правилам, что и колбочки и обладают центрально-периферическим антагонизмом в отношении белого и черного, а также контактируют как с ON-, так и с OFF-ганглиозными клетками.
Большинство ганглиозных клеток палочек и колбочек — мелкие (Р-клетки — от parvocellular), имеют небольшие рецепторные поля и отвечают за определение формы и цвета. Лишь малая их часть — крупные клетки (М-клетки — от magnocellular), имеют большие рецепторные поля и отвечают за регистрацию движений в поле зрения.
6. Специализация центральной ямки. Относительная плотность колбочек прогрессивно увеличивается, а их размер прогрессивно уменьшается от края центральной ямки к ее центру. Центральная треть центральной ямки (ямочка, foveola) имеет ширину лишь немного более 100 нм и содержит только карликовые колбочки. Для всех колбочек центральной ямки и карликовых колбочек особенно характерны две специфические анатомические особенности, позволяющие передавать максимальное количество информации о форме и цветовых качествах объекта при его внимательном изучении. Во-первых, более поверхностные слои сетчатки отклоняются кнаружи от центра, а их отростки имеют избыточную длину. Это приводит к тому, что наружные две трети ямочки становятся частично перекрытыми телами биполярных клеток, а внутренняя треть ничем не закрыта; свет, отраженный от объекта попадает на колбочки ямочки без какого-либо рассеяния.
Во-вторых, наличие синаптических контактов в отношении 1:1 между карликовыми колбочками и их биполярными нейронами, а также между ними и ганглиозными клетками улучшает точность центральной передачи. Кнаружи от ямочки степень конвергенции «колбочка => биполярная клетка => ганглиозная клетка» прогрессивно увеличивается.
(А) Горизонтальный срез правого глазного яблока на уровне диска зрительного нерва и центральной ямки.
(Б) Увеличенное изображение рисунка А. Возвратные аксоны огибают центральную ямку, как показано на рисунке В.
(В) Поверхность центральной ямки и окружающей сетчатки. Колбочки расположены с интервалами, чтобы показать «цепочечную» последовательность нейронов.
СБК — слой биполярных клеток; СГК — слой ганглиозных клеток.
— Также рекомендуем «Зрительные проводящие пути: зрительный нерв, зрительный путь, коленчато-шпорный путь, первичная зрительная кора»
Редактор: Искандер Милевски. Дата публикации: 21.11.2018
Источник