Способность рецепторов сетчатки приспосабливается к разной освещенности это
Первую сою статью я начну с того, что расскажу вам о зрительном органе нашего организма это глаз.
Глаз – орган зрительной системы человека, обладающий способностью воспринимать свет и обеспечивать функцию зрения. У человека через глаз поступает 90% информации из окружающего мира.
Роговица – это природная линза, это передняя, наиболее выпуклая прозрачная часть глазного яблока. Роговица не содержит кровеносных сосудов, но имеет нервные окончания. Помимо защитной функции, она также выполняет функцию преломления света.
Склера – задняя, непрозрачная, белесоватая внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся глазодвигательные мышцы.
Радужная оболочка (радужка) – это «живая» диафрагма. Находится между роговицей и хрусталиком. Имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело, а внутренним ограничивает отверстие зрачка.
Хрусталик («живая линза») — прозрачное эластичное образование в капсуле, имеющее форму двояковыпуклой линзы. Хрусталик обладает интересной особенностью – с помощью связок и мышц вокруг, он может изменять свою кривизну, что, в свою очередь, изменяет направление световых лучей.
Цилиарная мышца – внутренняя парная мышца глаза, которая обеспечивает аккомодацию. С помощью цилиарной мышцы происходит изменение кривизны хрусталика и человек может четко видеть предметы на различных расстояниях.
Стекловидное тело – гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза, за хрусталиком. Поддерживает форму глазного яблока, принимает участие в преломлении световых лучей.
Сетчатка – рецепторная часть зрительного анализатора. Здесь происходят восприятие света и передача информации в центральную нервную систему.
В сетчатке мы можем найти главные для нас элементы:
· Фоторецепторы – палочки и колбочки. Представляют собой нейроны с отростками разной формы. Палочки отвечают за сумеречное и ночное зрение, колбочки – за остроту зрения и цветовосприятие (дневное зрение).
· Диск выхода зрительного нерва – место выхода из глаза зрительного нерва. Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. По зрительному нерву импульсы попадают в наш головной мозг, который и формирует изображение.
· Жёлтое пятно (макула) – находится на сетчатке, как правило, напротив зрачка. При нормальной работе глаза лучи света должны фокусироваться четко на макуле.
За счет чего же движется глаз ?
Он самый подвижный из всех органов человеческого организма.Различные движения глаза, повороты в стороны, вверх, вниз, обеспечивают глазодвигательные мышцы, расположенные в глазнице.Всего их 6: 4 прямые мышцы крепятся к передней части склеры и 2 косые, прикрепляются к задней части склеры.
Зрительные функции.
Зрение — это основная функция глаз, которая складывается из нескольких этапов.
Свет, который отражается от предметов, движется в глаз. Далее он проходит и преломляется через роговицу, хрусталик, стекловидное тело и попадает на сетчатку.
Бинокулярное зрение – это способность зрительной системы воспринимать изображения одновременно двумя глазами, как единый объёмный образ.
Нормальное бинокулярное зрение возможно при определённых условиях:
· согласованная работа всех глазодвигательных мышц, обеспечивающая параллельное положение глазных яблок при взгляде вдаль и соответствующее сведение зрительных осей (конвергенция) при взгляде вблизи, а также правильные ассоциированные движения глаз в направлении рассматриваемого объекта.
· расположение глаз в одной фронтальной и горизонтальной плоскости.
· острота зрения обоих глаз не менее 0,3-0,4, т.е. достаточная для формирования чёткого изображения на сетчатке.
равные величины изображений на сетчатке обоих глаз (при анизометропии до 2,0 Дптр).
Анизометропия – это когда у человека глаза имеют разную рефракцию, например, левый -2.0 Дптр, а правый -1.5 Дптр. В таком примере анизометропия составит 0,5 Дптр.
Конвергенция и дивергенция.
При рассматривании предметов, глаза человека движутся координированно. Такие движения глаз называются содружественными.
При рассматривании близко расположенных предметов зрительные оси глаз сближаются (сводятся) – этот процесс называется конвергенцией.
При рассматривании предметов вдалеке, положение зрительных осей приближается к параллельному – данное разведение осей называется дивергенция.
Аккомодация.
За счет изменения формы хрусталика происходит фокусировка изображения. Хрусталик меняет кривизну в зависимости от расстояния между глазом и предметом (аккомодация глаза).
Аккомодация – это способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза. Количественно аккомодацию характеризуют две величины: длина (расстояние между ближайшей и дальнейшей точками ясного зрения) и объём (разница в показателях рефракции глаз (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения). С возрастом, волокна хрусталика уплотняются, и эластичность уменьшается, вследствие чего способность к аккомодации снижается.
Поле зрения – пространство, воспринимаемое глазом при неподвижном взгляде. Это пространство и по горизонтали, и по вертикали!
Цветоощущение — способность человека различать цвет видимых объектов (дневное видение). За эту функцию отвечают колбочки, расположенные в сетчатке.
Светоощущение — это способность зрительного анализатора воспринимать свет и различать степени его яркости (ночное видение). Это функция, за которую отвечают палочки, расположенные в сетчатке.
Светоадаптация – это способность глаза проявлять световую чувствительность при различной освещённости. Принято различать:
· световую адаптацию, которая протекает в течение первых секунд, затем замедляется и заканчивается к концу 1-й минуты, но может увеличиваться до 3 — 5 минут в зависимости от яркости светового потока, после чего светочувствительность глаза уже не увеличивается;
темновую адаптацию — изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным.
Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.
Острота зрения – это способность глаза распознавать минимальные по размеру объекты на расстоянии более 5 метров. Она, в первую очередь, зависит от правильного соотношения оптической силы глаза к его длине.
Дефекты зрения.
Миопия или близорукость — дефект зрения, при котором изображение формируется не на сетчатке, а перед ней. Коррекция миопии осуществляется рассеивающими (отрицательными) линзами.
Гиперметропия или дальнозоркость — дефект зрения, при котором изображение формируется за сетчаткой. Коррекция гиперметропии осуществляется собирающими (положительными) линзами.
Астигматизм — дефект зрения, возникающий вследствие неправильной (не сферичной) формы роговицы (реже — хрусталика). Коррекция осуществляется цилиндрическими очковыми линзами.
Пресбиопия — возрастное ослабление аккомодации глаза.
Коррекция, как правило, осуществляется офисными или прогрессивными линзами (самый удобный и современный способ). Как уже говорили выше, с возрастом волокна хрусталика уплотняются, а эластичность уменьшается, вследствие чего снижается способность к аккомодации.
P.S.
Материалы взяты из личной библиотеки.
Ставьте лайки и ждите новых статей про оптику.
Источник
Функция зрения осуществляется благодаря сложной системе различных взаимосвязанных структур, образующих зрительный анализатор,который состоит из трёх отделов:
§ периферического – рецепторы сетчатой оболочки глаза;
§ проводникового – зрительные нервы, передающие возбуждение в головной мозг;
§ центрального – подкорковые и стволовые центры (латеральные коленчатые тела, подушка таламуса, верхние холмики крыши среднего мозга), а также зрительная область в затылочной доле коры больших полушарий головного мозга.
Анатомическим образованием сенсорной зрительной системы, по сути, её периферическим отделом, является глаз – парное, почти сферическое образование диаметром 24 мм и весом 6–8 г, расположенное в глазницах черепа (рис. 1). Глаз укреплен здесь при помощи четырех прямых и двух косых мышц, управляющих его движениями. Форма глаза поддерживается за счет гидростатического давления (25 мм рт. ст.) водянистой влаги и стекловидного тела.
Человеческий глаз воспринимает световые волны лишь определенной длины – приблизительно от 380 до 770 нм. Чувствительность глаза к свету варьирует: в темноте повышается, на свету снижается. Способность глаза приспосабливаться к восприятию света разной яркости носит название зрительной адаптации. Расстройство темновой адаптации выражается в снижении способности ориентироваться в пространстве при недостаточной освещенности, вплоть до утраты возможности к передвижению. Это состояние называется гемералопией («куриная слепота»). Гемералопия может возникнуть при гиповитаминозе А, в результате инфекционных болезней, плохого питания и др. Световая адаптация – это приспособление органа зрения к высокому уровню освещенности, протекающее достаточно быстро (50–60 сек). Так, если человек входит из темноты в ярко освещённую комнату, у него возникает временное ослепление, которое быстро проходит. Люди с нарушенной световой адаптацией лучше видят в сумерках, чем на свету.
Световые лучи от рассматриваемых предметов проходят через оптическую систему глаза (роговицу, хрусталик и стекловидное тело) и фокусируются на его внутренней оболочке (сетчатке), которая является собственно зрительным рецептором, потому что здесь сосредоточены светочувствительные клетки – фоторецепторы (колбочки и палочки).
Светоощущение является наиболее тонкой функцией органа зрения. Благодаря ему, человек обладает способностью определять свет по яркости, интенсивности и может видеть не только днем, но и в сумерки. Сетчаткасостоит из 10 слоёв, но в светоощущении участвуют 2, 6 и 9-й (рис. 2).
Рис. 1. Схематическое изображение глазного яблока человека
В сетчатке человека насчитывается примерно 5-6 млн. колбочек и 120 млн. палочек (рис. 3). Колбочки являются носителями цветного, дневного зрения, палочки – носителями светоощущения в сумеречных (бесцветовых) условиях. Чувствительность палочек зависит от концентрации зрительного пурпура в них и нервных элементов зрительного анализатора.
I – пигментный слой; II – слой палочек и колбочек; III – наружный ядерный слой; IV – наружный сетчатый слой; V – слой горизонтальных клеток; VI – слой биполярных клеток (внутренний ядерный); VII – слой амакриновых (однополюсных грушевидных) клеток; VIII – внутренний сетчатый слой; IX – слой ганглиозных клеток; X – слой волокон зрительного нерва Рис. 2. Схема строения сетчатки глаза человека |
Самым важным и очень тонким местом сетчатки является так называемое пятно сетчатки («жёлтое пятно») с центральной ямкой, где сосредоточена основная масса колбочек. По мере продвижения к периферии плотность колбочек снижается, но одновременно увеличивается плотность палочек.Колбочки, обладающие высокой разрешающей способностью, в основном обеспечивают дневное цветоощущение и участвуют в точном восприятии формы, цвета и деталей предмета. Жёлтое пятно, особенно его центральная ямка, – место наиболее чёткого, так называемого центрального зрения.
А – палочка: 1 – наружный членик; 2 – внутренний членик; 3 – волокно; 4 – ядро; 5 – конечная пуговка. Б — колбочка: 1 – наружный членик; 2 – внутренний членик; 3 – ядро; 4 – волокно; 5 – ножка Рис. 3. Строение палочки и колбочки сетчатки глаза |
Способность оптической системы глаза строить чёткое изображение на сетчатке называют остротой зрения, в основе которой лежит разрешающая способность глаза, т. е. его способность воспринимать раздельно две точки при минимальном расстоянии между ними. Если лучи, исходящие от двух рядом расположенных точек, возбуждают одну и ту же, или две соседние колбочки, то обе точки воспринимаются как одна более крупная. Для их раздельного видения необходимо, чтобы между возбужденными колбочками находилась еще хоть одна. Следовательно, максимально возможная острота зрения зависит от толщины колбочек в центральной ямке желтого пятна. Острота зрения несколько меняется в зависимости от силы освещения. При одной и той же освещенности острота зрения может значительно меняться. При утомлении острота зрения понижается.
По мере удаления от жёлтого пятна количество колбочек уменьшается, а число палочек возрастает; на периферии сетчатки имеются только палочки. Палочки, имеющие малую разрешающую способность, но, в то же время, очень высокую световую чувствительность, способствуют восприятию предметов в сумерках или ночью («сумеречное зрение»).
Отделы сетчатки вокруг жёлтого пятна обеспечивают периферическое, или боковое, зрение, при котором форма предмета воспринимается менее четко. Поэтому, если центральное зрение дает возможность рассматривать мелкие детали и опознавать предметы, то периферическое зрение является очень важной функцией, расширяющей возможности свободной ориентации в пространстве. Оно определяется полем зрения, которое охватывается одновременно фиксированным глазом. Без периферического зрения человек практически слеп, он не может передвигаться без посторонней помощи. При нормальном поле зрения человек способен в известных пределах обозревать предметы и явления целостно, одновременно, во взаимных связях и отношениях, охватывать взором дистантно расположенные предметы.
Поле зрения у детей несколько меньше, чем у взрослых, что, является одной из причин повышенной частоты дорожно-транспортных происшествий с детьми. Значительное концентричное сужение поля зрения происходит при пигментной дистрофии сетчатки и глаукоме (так называемое «трубочное зрение»). Встречаются изменения поля зрения, связанные с частичным его выпадением в центре или на периферии сетчатки глаза (скотомы). Наличие в поле зрения небольших скотом ведёт к возникновению теней, пятен, кругов, овалов, дуг, осложняя восприятие предметов, затрудняя чтение и письмо. Последнее становится невозможным при обширных двусторонних скотомах.
Оптическая система глаза. Помимо рецепторного аппарата, находящегося в сетчатке, глаз включает в себя оптическую систему, которая, фокусируя световые лучи, обеспечивает создание на сетчатке чёткого изображения предметов, расположенных как на близком, так и на дальнем расстоянии от глаза. Эта способность глаза называется аккомодацией.
Оптическая система глаза состоит из роговицы, хрусталика и стекловидного тела, но аккомодационная функция глаза зависит, главным образом, от роговицы и хрусталика.
От объекта, удаленного на расстояние больше шести метров, в глаз поступают практически параллельные лучи света, тогда как лучи, идущие от более близких предметов, заметно расходятся. В обоих случаях для того, чтобы свет сфокусировался на сетчатке, он должен быть преломлен (т. е. его путь изогнут), и для близких предметов преломление должно быть более сильным. Нормальный глаз способен точно фокусировать свет от объектов, находящихся на расстоянии от 25 см до бесконечности. Преломление света происходит при переходе его из одной среды в другую, имеющую иной коэффициент преломления, в частности, на границе воздух – роговица и у поверхности хрусталика.
Роговица – передняя часть склеры глаза – это сферической формы, бессосудистая, высокочувствительная, прозрачная, оптически гомогенная оболочка с гладкой, зеркальной, блестящей поверхностью.
Форма роговицы не может изменяться, поэтому рефракция здесь зависит только от угла падения света на роговицу, который, в свою очередь, зависит от удаленности предмета. В роговице происходит наиболее сильное преломление света, а функция хрусталика состоит в окончательной «наводке на фокус».
Хрусталик – это прозрачное эластическое образование, имеющее форму двояковыпуклой линзы. Хрусталик покрыт стекловидной, бесструктурной, прозрачной, очень плотной и сильно преломляющей свет капсулой (сумкой), по всему краю которой к цилиарной мышце ресничного тела тянутся тонкие, но очень упругие волокна (цинновы связки). Они сильно натянуты и держат хрусталик в растянутом (уплощённом) состоянии, но при рассматривании близких предметов натяжение цинновых связок уменьшается, натяжение капсулы ослабляется и хрусталик, вследствие своей эластичности, становится более выпуклым. Сила преломления его увеличивается, – происходит аккомодация глаза на близкое расстояние. При смотрении вдаль, увеличившееся натяжение цинновых связок, приводит к обратному эффекту: хрусталик делается более плоским и его преломляющая способность становится наименьшей.
Хрусталик молодых людей содержит в своём составе преимущественно растворимые белки, но после 20 лет белковый состав хрусталика постепенно изменяется: увеличивается количество его нерастворимых фракций и уменьшается растворимых. В результате, в хрусталике формируется плотное ядро, которое к старости ещё более увеличивается, и хрусталик почти полностью теряет свою эластичность. Постепенно теряется проницаемость сумки хрусталика, в результате чего изменяется снабжение его питательными веществами и формируется его помутнение (старческая катаракта), со всеми вытекающими последствиями для светопроницаемости и аккомодационной функции глаза.
Полость глаза позади хрусталика заполнена прозрачным, аморфным, желеобразным веществом – стекловидным телом, заполняющим пространство между сетчаткой и хрусталиком. В стекловидном теле содержится до 98% воды и ничтожно малое количество белка и солей. Оно не имеет сосудов и нервов, но придаёт форму и упругость глазному яблоку, является одним из важных элементов оптической системы глаза; при заболеваниях – мутнеет.
Все три образования преломляют световые лучи таким образом, что на сетчатке образуется уменьшенное и перевёрнутое изображение видимых глазом предметов, но это не мешает правильному их восприятию, так как все дело не в пространственном положении изображения на сетчатке, а в интерпретации его мозгом.
Преломляющая способность глаза в состоянии покоя, обеспечивающая фокусирование изображения на сетчатке, называется рефракцией. Рефракция может быть:
1. Соразмерная(нормальная) – эмметропия.
2. Несоразмерная:
§ дальнозоркость (гиперметропия) – является следствием короткой продольной оси глаза. Она бывает связана либо с неправильной формой глаза (укороченное глазное яблоко), либо с неправильной кривизной хрусталика. В этих случаях изображение фокусируется позади сетчатки. Для перемещения изображения на сетчатку дальнозоркий должен усилить свою преломляющую способность за счёт увеличения кривизны хрусталика. Необходимы очки с двояковыпуклыми стёклами;
§ близорукость (миопия) – в этом случае параллельные лучи, идущие от далёких предметов, пересекаются впереди сетчатки, не доходя до неё. Это связано со слишком длинной продольной осью глаза, или с большей, чем нормальная, преломляющей силой глаза (хрусталика). Чтобы ясно видеть вдаль, близорукий должен иметь перед глазами обоюдовогнутые стёкла, которые уменьшают преломляющую силу хрусталика и, тем самым, отодвигают изображение на сетчатку.
§ астигматизм – обусловлен патологическими изменениями роговой оболочки, теряющей на некоторых участках свою сферичность, в связи с чем, различные участки роговицы обладают различной преломляющей способностью, и оптические стёкла с единой степенью кривизны не обеспечивают нужной фокусировки изображения на сетчатке.
Цветовое зрение. В видимой части спектра человеческий глаз поглощает свет всех длин волны, воспринимая их в виде семи цветов («Каждый – красный, Охотник – оранжевый, Желает – жёлтый, Знать – зелёный, Где – голубой, Сидит – синий, Фазан – фиолетовый»), каждый из которых соответствует определенному участку солнечного спектра. Способность человеческого глаза к различению большого количества (до нескольких тысяч) цветовых оттенков достигается благодаря наличию в сетчатке глаза трёх видов колбочек – «красных», «зеленых» и «синих», которые содержат разные пигменты и, по данным электрофизиологических исследований, поглощают свет с различной длиной волны.
Цветовое зрение объясняют с позиций трехкомпонентной теории, согласно которой ощущения различных цветов и оттенков определяются степенью раздражения каждого типа колбочек светом, отражаемым от объекта. Так, например, одинаковая стимуляция всех колбочек вызывает ощущение белого цвета. Эффект смешения цветов лежит в основе цветного телевидения, фотографии, живописи.
Крайняя периферия сетчатки воспринимает только белый цвет, приближение к центру сопровождается ощущением синего цвета, далее желтого, красного, а зеленый цвет воспринимается преимущественно областью желтого пятна. Первичное различение цветов осуществляется в сетчатке, но окончательный цвет, который будет воспринят, определяется интегративными функциями мозга.
Важным условием нормального зрения является взаимодействие двух глаз, т. е. способность видеть двумя глазами одновременно, при этом воспринимая рассматриваемый объект как единое целое. Эта зрительная способность называется бинокулярным зрением. Оно позволяет получать объемное изображение предметов и определять их относительное расстояние от наблюдателя.Объёмное зрение, т. е. восприятие формы предмета, начинает формироваться с 5 месяцев и уже к 9-ти месяцам ребёнок приобретает способность стереоскопического восприятия пространства, различения глубины и отдалённости расположения предметов. Однако полное формирование бинокулярного зрения завершается к 7-15 годам.
Наконец, немаловажной характеристикой зрения человека является его стереоскопичность. Два отдельных плоских изображения, получаемых правым и левым глазом, в корковом зрительном центре «сливаются» в одно, и формируют понятия стереоскопичности изображения.
Механизм зрительного восприятия. Свет, попадая на фоторецепторы, вызывает перестройку содержащихся в них зрительных пигментов: зрительный пигмент палочек родопсинразлагается на ретиналь – производное витамина А, и белок опсин. Ретиналь, превратившись затем в витамин А, расходуется на регулирование проницаемости клеточных мембран пигментных клеток сетчатки, но для обеспечения ночного зрения, необходимо обратное восстановление витамина А и опсина в родопсин. Если витамина А оказывается недостаточно, то развивается нарушение ночного зрения («куриная слепота»).
В колбочках вместо родопсина находится йодопсин, несколько отличающийся по структуре от родопсина, и не требующий участия витамина А в осуществлении функции зрения.
При перестройке зрительных пигментов возникают нервные импульсы, которые передаются в последующие нейроны сетчатки (биполярные и ганглиозные клетки) и далее – в зрительный нерв, берущий начало от ганглиозных клеток. Участок сетчатки, из которого выходит зрительный нерв, лишён и колбочек, и палочек, и потому не способен к восприятию света. Его называют «слепым пятном».
Выходя из глазницы через решётчатую пластинку склеры и зрительный канал, волокна зрительного нерва (проводниковый от дел зрительного анализатора), направляются в головной мозг (рис. 4).
Пройдя в полость черепа, зрительные нервы правого и левого глаза образуют на основании мозга, в области турецкого седла, частичный перекрест (хиазму), при этом перекрещиваются только волокна, идущие от внутренних («носовых») половин сетчатки, а волокна от наружных («височных») половин сетчатки не перекрещиваются. После перекреста образуются зрительные тракты. Таким образом, правый зрительный тракт содержит волокна височной половины сетчатки правого глаза и носовой половины – левого глаза, а левый зрительный тракт – наоборот, неперекрещенные волокна височной половины левого глаза и перекрещенные волокна носовой половины правого глаза (рис. 5). В составе зрительных трактов нервные волокна достигают подкорковых зрительных |
Рис. 4. Зрительный анализатор |
центров в латеральных коленчатых телах, верхних холмах четверохолмия, таламусе и гипоталамусе). Здесь заканчивается периферическая часть зрительного анализатора.
Центральная часть зрительного анализатора начинается от аксонов подкорковых зрительных центров, где происходит переключение зрительного раздражения на проводящие пути головного мозга, в составе которых они достигают его коры в затылочной доле. Корковые зрительные центры объединяют 17, 18 и 19 поля (по Бродману) коры больших полушарий (рис. 5).
При этом центральным ядром коркового конца зрительного анализатора, органом высшего анализа и синтеза зрительных раздражений, формирующим зрительный образ, является 17-е поле Бродмана, 18 и 19 поля являются ассоциативными. При повреждении 17-го поля коры может наступить физиологическая слепота, а при поражении 18 и 19-го полей нарушается пространственная ориентация.
Глазодвигательные механизмы зрения. Нормальная работа глаза требует его подвижности и способности к тонким установкам, необходимым для
всякого точно действующего оптического прибора. Для получения отчётливого
изображения рассматриваемого предмета на сетчатке, необходимо чтобы предмет находился на зрительной оси глаза, проходящей через центр хрусталика и жёлтое пятно сетчатки.
Правильная установка зрительных осей достигается:
– движениями тела и поворотом головы – грубая установка;
– движениями глазодвигательных мышц – тонкая установка;
– аккомодацией хрусталика – тончайшая установка, регулируемая ЦНС и обеспечиваемая реснитчатой (аккомодационной) мышцей глаза;
– конвергенцией – процессом сведения зрительных осей до их пересечения на рассматриваемом предмете, т. е. в точке фиксации. Обеспечивается сокращением прямых мышц глаза. Нарушения конвергенции приводят к аномалиям бинокулярного зрения, связанным, прежде всего, с развивающимся косоглазием или нистагмом.
Дата добавления: 2017-11-30; просмотров: 5012; Опубликованный материал нарушает авторские права? | Защита персональных данных
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9228 — | 7816 — или читать все…
Источник