Роговицу глаза покрывает эпителий

Эпителий роговицы — наружный слой роговой оболочки глаза. У человека эпителий расположен над слоем Боумена, у ряда других млекопитающих — непосредственно над стромой роговицы. Эпителий состоит из нескольких слоёв эпителиальных клеток: у человека в центральной зоне насчитывают пять слоёв, на периферии — до 10.[2] Эпителий роговицы уникален своей прозрачностью и отсутствием кровеносных сосудов; на периферии он сменяется лимбом роговицы, за которым следует конъюнктива.

В эпителии роговицы млекопитающих отмечается крайне высокая, по сравнению с другими тканями, концентрация ацетилхолина.[3] По данным одного сравнительного исследования, это характерно лишь для дневных млекопитающих, у ночных же ацетилхолина в эпителии не было обнаружено.[4]

Также в эпителии велико содержание витамина C.[5]

Поверхность эпителия у разных видов испещрена характерными микроструктурами — микроволосками, микрогребнями, микроскладками и даже микроотверстиями. Характер структур определяется средой обитания вида.[6][7]

Как и другие виды эпителия, роговичный эпителий содержит иммунные клетки Лангерганса, причём, по данным одного исследования, у носителей контактных линз их число почти вдвое больше по сравнению с теми, кто не носит линз.[8]

Обновление эпителия[править | править код]

«Мозаичный анализ» обновления эпителия стволовыми клетками в глазе мыши. Применено окрашивание с помощью гена-репортера, кодирующего белок бета-галактозидазу. Половина клеток тела мыши в этой модели экпрессирует трансген XLacZ, половина — нет. На фотографиях глаз разных «мозаичных» мышей можно наблюдать, как новые клетки продвигаются к центру, создавая небольшой «водоворот». A: три недели после рождения, стволовые клетки только начинают активироваться; B: 6 недель; C: 8 недель; D: 10 недель; E: 15 недель; F: 20 недель; G: 26 недель. Фрагмент иллюстрации из Mort et al., 2009.[9]

Клетки эпителия, наряду с кератоцитами стромы и клетками эндотелия, составляют одну из трёх основных клеточных популяций, из которых строится роговица. Популяция поддерживается находящимися на периферии стволовыми клетками лимба (англ. limbal stem cells, LSC). Стволовые клетки порождают временно делящиеся клетки (англ. transient amplifying cell, TAC), которые пролиферируют и мигрируют к центру, в какой-то момент времени совершают своё последнее деление, дифференцируются и поднимаются всё ближе к поверхности, где они постоянно отшелушиваются с верхнего слоя.[9]

Повреждения и заболевания[править | править код]

При синдроме под названием «рецидивирующая эрозия роговицы» нарушается крепление клеток эпителия к слою Боумена.

При роговичной дистрофии Месманна в толще эпителия образуются кисты.

Еще одно расстройство, поражающее эпителий — редко встречающаяся дистрофия базальной мембраны эпителия (Map-Dot-Fingerprint), некоторые случаи которой ассоциированы с мутациями гена TGFBI.[11]

У пациентов, прошедших процедуру LASIK, может наблюдаться врастание эпителия под лоскут.[12] Это отклонение, обнаруживаемое примерно в 1 % случаев, обычно проходит само собой, но изредка оно всё же вызывает необходимость в хирургическом вмешательстве.[13]

Любое, даже слабое, повреждение эпителия вызывает немедленный апоптоз низлежащих кератоцитов стромы, впоследствии восполняющих свою численность. Причины и механизмы этого процесса активно исследуются.[14] Гибель, трансформация и пролиферация кератоцитов может происходить под влиянием сигнальных молекул — цитокинов, выделяемых клетками эпителия.

При кератоконусе в эпителии роговицы отмечаются отклонения в экспрессии генов, их обнаружение может помочь в расследовании причин заболевания.[15][16]

См. также[править | править код]

  • Высокая экспрессия в эпителии роговицы:
    • Катепсин L2
    • Кератин 3 и кератин 12 — образуют димеры
    • Кератоэпителин

Примечания[править | править код]

  1. 1 2 Foundational Model of Anatomy
  2. ↑ Encyclopedia of Biomaterials and Biomedical Engineering By Gary E. Wnek, Gary L. Bowlin Contributor Gary E. Wnek Edition: 2 Published by Informa Health Care, 2008 ISBN 1420079565, 9781420079562; Эпителий описан на стр. 2707
  3. Liu S., Li J., Tan D. T., Beuerman R. W. Expression and function of muscarinic receptor subtypes on human cornea and conjunctiva (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2007. — July (vol. 48, no. 7). — P. 2987—2996. — doi:10.1167/iovs.06-0880. — PMID 17591863.
  4. Ringvold A., Reubsaet J. L. Acetylcholine in the corneal epithelium of diurnal and nocturnal mammals (англ.) // Cornea : journal. — 2005. — November (vol. 24, no. 8). — P. 1000—1003. — PMID 16227851. (недоступная ссылка)
  5. ↑ Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1681-3. Ascorbic acid content of human corneal epithelium. Brubaker RF, Bourne WM, Bachman LA, McLaren JW. PMID 10845585
  6. Collin H. B., Collin S. P. The corneal surface of aquatic vertebrates: microstructures with optical and nutritional function? (англ.) // Philos. Trans. R. Soc. Lond., B, Biol. Sci. : journal. — 2000. — September (vol. 355, no. 1401). — P. 1171—1176. — doi:10.1098/rstb.2000.0661. — PMID 11079392.
  7. Collin S. P., Collin H. B. The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function (англ.) // J. Morphol. : journal. — 2006. — March (vol. 267, no. 3). — P. 273—291. — doi:10.1002/jmor.10400. — PMID 16323209.
  8. Zhivov A., Stave J., Vollmar B., Guthoff R. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers (англ.) // Cornea : journal. — 2007. — January (vol. 26, no. 1). — P. 47—54. — doi:10.1097/ICO.0b013e31802e3b55. — PMID 17198013.
  9. 1 2 Mort R. L., Ramaesh T., Kleinjan D. A., Morley S. D., West J. D. Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium (англ.) // BMC Dev. Biol. (англ.)русск. : journal. — 2009. — Vol. 9. — P. 4. — doi:10.1186/1471-213X-9-4. — PMID 19128502.
  10. Klintworth G. K. Corneal dystrophies (англ.) // Orphanet J Rare Dis (англ.)русск. : journal. — 2009. — Vol. 4. — P. 7. — doi:10.1186/1750-1172-4-7. — PMID 19236704.
  11. ↑ CORNEAL DYSTROPHY, EPITHELIAL BASEMENT MEMBRANE — генетический каталог OMIM
  12. Sridhar M. S., Rao S. K., Vajpayee R. B., Aasuri M. K., Hannush S., Sinha R. Complications of laser-in-situ-keratomileusis (англ.) // Indian J Ophthalmol (англ.)русск. : journal. — 2002. — December (vol. 50, no. 4). — P. 265—282. — PMID 12532491.
  13. Toda I. LASIK and the ocular surface (неопр.) // Cornea. — 2008. — September (т. 27 Suppl 1). — С. S70—6. — doi:10.1097/ICO.0b013e31817f42c0. — PMID 18813078. (недоступная ссылка)
  14. Wilson S. E., Chaurasia S. S., Medeiros F. W. Apoptosis in the initiation, modulation and termination of the corneal wound healing response (англ.) // Exp. Eye Res. : journal. — 2007. — September (vol. 85, no. 3). — P. 305—311. — doi:10.1016/j.exer.2007.06.009. — PMID 17655845.
  15. Nielsen K., Birkenkamp-Demtröder K., Ehlers N., Orntoft T. F. Identification of differentially expressed genes in keratoconus epithelium analyzed on microarrays (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2003. — June (vol. 44, no. 6). — P. 2466—2476. — PMID 12766045.
  16. Rabinowitz Y. S., Dong L., Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5 (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2005. — April (vol. 46, no. 4). — P. 1239—1246. — doi:10.1167/iovs.04-1148. — PMID 15790884.
Читайте также:  Увеличение кривизны роговицы что это

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2019;
проверки требует 41 правка.

Рогови́ца, роговая оболочка (лат. cornea)[2] — передняя наиболее выпуклая прозрачная часть фиброзной оболочки глазного яблока, одна из светопреломляющих сред глаза.

Строение[править | править код]

Основное вещество роговицы состоит из прозрачной соединительнотканной стромы и роговичных телец. Спереди и сзади стромы прилегают две пограничные пластинки. Передняя пластинка, или боуменова оболочка, является производным основного вещества роговицы. Задняя, или десцеметова, оболочка является производным эндотелия, покрывающего заднюю поверхность роговицы, а также всю переднюю камеру глаза. Спереди роговица покрыта многослойным эпителием. В роговице человеческого шесть слоёв:

  1. передний эпителий,
  2. передняя пограничная мембрана (Боуменова),
  3. основное вещество роговицы, или строма
  4. слой Дюа — тонкий высокопрочный слой, открытый в 2013 году,
  5. задняя пограничная мембрана (Десцеметова оболочка),
  6. задний эпителий, или эндотелий роговицы.

Роговица у человека занимает примерно 1/6[3] площади наружной оболочки глаза. Она имеет вид выпукло-вогнутой линзы, обращённой вогнутой частью назад. Диаметр роговицы варьируется в очень незначительных пределах и составляет 10±0,56 мм, однако вертикальный размер обычно на 0,5—1 мм меньше горизонтального. Толщина роговицы в центральной части 0,52—0,6 мм, по краям — 1—1,2 мм. Радиус кривизны роговицы составляет около 7,8 мм.

Диаметр роговицы незначительно увеличивается с момента рождения до 4 лет и с этого возраста является константой. То есть рост размеров глазного яблока опережает возрастное изменение диаметра роговицы. Поэтому y маленьких детей глаза кажутся больше, чем y взрослых.

У многих млекопитающих (кошек, собак, волков и других хищников)[4] Боуменова мембрана отсутствует.[5]

В роговице в норме нет кровеносных и лимфатических сосудов[2], питание роговицы осуществляется омывающими её водянистой влагой передней камеры глаза (задняя поверхность роговицы) и слёзной жидкостью (передняя наружная поверхность роговицы). Место перехода роговицы в склеру называется лимбом роговицы.

Физиология[править | править код]

Показатель преломления вещества роговицы 1,376, преломляющая сила — 40 дптр.

В норме у человека роговица смачивается слёзной жидкостью при моргании.

Заболевания роговицы[править | править код]

  • Кератит
  • Кератоконъюнктивит
  • Кератоконус
  • Кератоглобус
  • Кератомаляция
  • Буллёзная кератопатия
  • Дистрофии роговицы
  • Ленточная кератопатия
  • Ксерофтальмия
  • Пеллюцидная краевая дегенерация
  • Вторичная эктазия роговицы

Роль роговицы при доставке лекарств в глаз[править | править код]

Благодаря своей многослойной структуре, роговица является малопроницаемой по отношению даже к малым молекулам лекарств. Некоторые вещества, содержащиеся в составе глазных капель, могут усиливать проникновение лекарств через роговицу. Такие вещества принято называть усилителями проницаемости. Примерами усилителей проницаемости являются циклодекстрины, ЭДТА, поверхностно-активные вещества и желчные кислоты.[6]

  • Роговица при просмотре щелевой лампой: cлева белесоватая дугообразная — толща роговицы

  • Строение роговицы

См. также[править | править код]

  • Пахиметрия
  • Глазная тонометрия
  • Контактная линза
  • Кератомилёз
  • Кератотомия
  • Лазерная коррекция зрения
  • Кератопластика
  • KERA
  • Кератин 3, Кератин 12
  • Кератансульфаты
  • Мигательная перепонка

Примечания[править | править код]

  1. 1 2 Foundational Model of Anatomy
  2. 1 2 Синельников Р. Д., Синельников Я. Р., Синельников А. Я. Атлас анатомии человека. Учебное пособие. / В 4 т. Т. 4, 7-е изд. перераб. // М.: РИА Новая волна / Издатель Умеренков. — 2010. — 312 с., ил. ISBN 978-5-7864-0202-6 / ISBN 978-5-94368-053-3. (С. 245-246).
  3. ↑ Глазные болезни. Основы офтальмологии / Под редакцией профессора В. Г. Копаевой. — М.: ОАО «Издательство «Медицина», 2012. — С. 37. — ISBN 978-5-225-10009-4.
  4. Merindano Encina, María Dolores; Potau, J. M.; Ruano, D.; Costa, J.; Canals, M. A comparative study of Bowman’s layer in some mammals Relationships with other constituent corneal structures (англ.) // European Journal of Anatomy : journal. — 2002. — Vol. 6, no. 3. — P. 133—140.
  5. Dohlman, Claes H.; Smolin, Gilbert; Azar, Dimitri T. Smolin and Thoft’s The cornea: scientific foundations and clinical practice (англ.). — Hagerstwon, MD: Lippincott Williams & Wilkins (англ.)русск., 2005. — ISBN 0-7817-4206-4.
  6. Vitaliy V. Khutoryanskiy, Fraser Steele, Peter W. J. Morrison, Roman V. Moiseev. Penetration Enhancers in Ocular Drug Delivery (англ.) // Pharmaceutics. — 2019/7. — Vol. 11, iss. 7. — P. 321. — doi:10.3390/pharmaceutics11070321.

Литература[править | править код]

  • Каспаров А. А. Роговица // Большая медицинская энциклопедия, 3-е изд. — М.: Советская энциклопедия. — Т. 22.

Источник

  • Эпителий роговицы — наружный слой роговой оболочки глаза. У человека эпителий расположен над слоем Боумена, у ряда других млекопитающих — непосредственно над стромой роговицы. Эпителий состоит из нескольких слоёв эпителиальных клеток: у человека в центральной зоне насчитывают пять слоёв, на периферии — до 10. Эпителий роговицы уникален своей прозрачностью и отсутствием кровеносных сосудов; на периферии он сменяется лимбом роговицы, за которым следует конъюнктива.

    В эпителии роговицы млекопитающих отмечается крайне высокая, по сравнению с другими тканями, концентрация ацетилхолина. По данным одного сравнительного исследования, это характерно лишь для дневных млекопитающих, у ночных же ацетилхолина в эпителии не было обнаружено.Также в эпителии велико содержание витамина C.Поверхность эпителия у разных видов испещрена характерными микроструктурами — микроволосками, микрогребнями, микроскладками и даже микроотверстиями. Характер структур определяется средой обитания вида.Как и другие виды эпителия, роговичный эпителий содержит иммунные клетки Лангерганса, причём, по данным одного исследования, у носителей контактных линз их число почти вдвое больше по сравнению с теми, кто не носит линз.

Источник: Википедия

Связанные понятия

Боуменова мембрана не содержит клеток и состоит из переплетённых коллагеновых фибрилл и связанных с ними протеогликанов. При изучении эмбрионального развития описан синтез этого слоя клетками стромы, однако есть данные и о возможном вкладе эпителия в синтез фибрилл.

Десцеметова оболочка, или задняя пограничная мембрана, — промежуточный слой между стромой и эндотелием роговицы — роговой оболочки глаза. Эпонимное название дано в честь французского врача Жана Десцеме (J. Descemet, 1732—1810).

Кератоциты роговицы — особые фибробласты, содержащиеся в строме роговой оболочки глаза. Строма, образованная по большей части коллагеновыми волокнами и другими элементами внеклеточного матрикса, составляет 85-90 % толщины роговицы, и кератоциты играют важную роль в поддержании её прозрачности и заживлении повреждений. В здоровой роговице кератоциты находятся в спокойном состоянии, а при нарушении её целостности активируются и приступают к деятельности по починке повреждений. Часть кератоцитов при…

Эпителий (лат. epithelium, от греч. ἐπι- — сверх- и θηλή — сосок молочной железы), или эпителиальная ткань — слой клеток, выстилающий поверхность тела (такой Э. называется эпидермис) и полости тела, в том числе слизистые оболочки внутренних органов, пищевого тракта, дыхательной системы, мочеполовые пути. Кроме того, образует большинство желёз организма.

Читайте также:  Что применять при ожоге роговицы

Пигментный эпителий сетчатки (англ. retinal pigment epithelium; RPE) — один из десяти слоев сетчатки позвоночных. Представляет собой слой пигментированных эпителиальных клеток, который находится вне нервной части сетчатки (pars nervosa); он обеспечивает питательными веществами фоторецепторы и плотно связан с нижележащей сосудистой оболочкой и слабо — с фотосенсорным слоем (находится над ним). Пигментный эпителий сетчатки собственно и представляет собой пигментную часть сетчатки (pars pigmentosa…

Упоминания в литературе

Десцеметова оболочка является кутикулярным образованием, т. е. продуктом жизнедеятельности клеток эндотелия. Шлеммов канал обнаруживается уже на 3-м месяце. Эпителий роговицы возникает из клеток покровной эктодермы.

Связанные понятия (продолжение)

Мембрана Бруха — самый внутренний слой сосудистой оболочки глаза, является пограничной мембраной между хориоидеей и пигментной частью сетчатки. Ещё носит название стекловидной пластинки, поскольку на вид мембрана прозрачная. Толщина 2-4 мкм.

Паренхимато́зные диспротеино́зы — дисметаболические (дегенеративные, дистрофические) процессы с преимущественным нарушением обмена белков, развивающиеся первично в паренхиматозных клетках органов.

Биологические деструкти́вные проце́ссы — разрушение клеток и тканей в ходе жизнедеятельности организма или после его смерти. Эти изменения широко распространены и встречается как в норме, так и в патологии. Биологическая деструкция, наряду с дегенеративными (дистрофическими) изменениями, относится к альтеративным процессам.

Подробнее: Биологическая деструкция

Ти́мус (ви́лочковая железа) — орган лимфопоэза человека и многих видов животных, в котором происходит созревание, дифференцировка и иммунологическое «обучение» T-клеток иммунной системы.

Селезёнка (лат. splen, lien, др.-греч. σπλήν) — непарный паренхиматозный орган брюшной полости; самый крупный лимфоидный орган у позвоночных. Имеет форму уплощённой и удлинённой сферы, похож на железу и расположен в левой верхней части брюшной полости, позади желудка.

Полудесмосо́мы (англ. Hemidesmosomes) — клеточные контакты, расположенные на базальной стороне мембраны эпителиальной клетки и связывающие её с внеклеточным матриксом. Точнее, полудесмосомы связывают сеть промежуточных филаментов эпителиальных клеток с внеклеточным матриксом при помощи трансмембранных рецепторов. Электронная микроскопия показала, что структуры десмосом и полудесмосом очень похожи (полудесмосома выглядит как половина десмосомы, за что эта структура и получила своё название), однако…

Эндотелий роговицы, задний эпителий роговицы — монослой специализированных плоских клеток, выстилающих заднюю поверхность роговицы и входящих в соприкосновение с содержимым передней камеры глаза. Гексагональные клетки эндотелия содержат повышенное количество митохондрий и осуществляют транспорт жидкости и растворенных веществ, поддерживая роговицу в слабо дегидрированном состоянии, необходимом для её прозрачности. Площадь клеток примерно одинакова; при значительном разбросе их размера говорят о наличии…

Перици́т (от др.-греч. περι- — вокруг, около и κύτος — клетка), или клетка Руже́ — отростчатая клетка соединительной ткани. Перициты входят в состав стенок мелких кровеносных сосудов, в том числе капилляров. Предшественниками перицитов являются адвентициальные клетки. Впервые перициты описал Шарль Мари Бенджамин Руже (фр. Rouget) в 1874 году. Название «клетка Руже» впервые употребил Циммерман в 1923 году. Эти клетки являются составной частью гематоэнцефалического барьера (ГЭБ). Они обладают несколькими…

Эпиде́рмис, или ко́жица (от греч. ἐπί «на, при» + δέρμα «кожа»), — наружный слой кожи. Является многослойным производным эпителия.

Клетки Клара – это выпуклые клетки с короткими микроворсинками, найденные в бронхиолах легких. Клетки были найдены в ресничном эпителии. Клетки Клара могут выделять гликозаминогликаны, чтобы защищать эпителий бронхиол. Если количество бокаловидных клеток уменьшается, число клеток Клара растет.

Керата́нсульфа́ты (англ. keratan sulfate, KS) — полимерные сульфатированные гликозаминогликаны. Содержатся в костной и хрящевой ткани, роговице. Гликановая цепь кератансульфатов представляет собой сульфированный по оксиметильной группе поли-N-ацетиллактозамин. Одним концом гликановая цепь связана с белком, который называют ко́ровым («основным»; от англ. core protein); он обычно является частью клеточной поверхности или компонентом внеклеточного матрикса.

Клетка Меркеля (или клетка Меркеля-Ранвье,англ. Merkel cell) — механорецептор в коже позвоночных, необходимый для улавливания прикосновений. Впервые была описана в 1875 году немецким гистологом Фридрихом Зигмундом Меркелем. Клетка имеет округлую форму, её диаметр составляет около 10 µм. Особенно много клеток Меркеля содержится в высокочувствительных участках кожи, как, например, в эпидермисе ладоней человека (там их число колеблется от 200 до 400 клеток на мм2, тогда как на основной поверхности кожи…

Эпиретинальная мембрана — глазное заболевание как следствие нарушений в стекловидном теле, или, гораздо реже, диабета. Иначе она называется — макулярная складка.

Мезенхима́льные диспротеино́зы (сосу́дисто-строма́льные диспротеино́зы) — дисметаболические (дистрофические) процессы, характеризующиеся преимущественным нарушением белкового обмена и первично развивающиеся в строме органов.

Приспособле́ние в (адапта́ция) к меняющимся условиям существования является наиболее общим свойством живых организмов. Все патологические процессы, по существу, можно разделить на две группы: (1) процессы повреждения (альтеративные процессы) и (2) процессы приспособления (адаптивные процессы).

Подробнее: Процессы приспособления и компенсации

Гема́то-энцефали́ческий барье́р (ГЭБ) (от др.-греч. αἷμα, род. п. αἵματος — «кровь» и др.-греч. ἐγκέφαλος — «головной мозг») — физиологический барьер между кровеносной системой и центральной нервной системой. ГЭБ имеют все позвоночные.

Шванновские клетки (леммоциты) — вспомогательные клетки нервной ткани, которые формируются вдоль аксонов периферических нервных волокон. Создают, а иногда и разрушают, электроизолирующую миелиновую оболочку нейронов. Выполняют опорную (поддерживают аксон) и трофическую (питают тело нейрона) функции. Описаны немецким физиологом Теодором Шванном в 1838 году и названы в его честь.

Гранулемато́зное воспале́ние — воспаление, которое характеризуется образованием гранулём (узелков), возникающих в результате пролиферации и трансформации способных к фагоцитозу клеток.

Подробнее: Гранулёма

Меланобласты (англ. melanoblast) — клетки позвоночных, дающие начало пигментным клеткам, производящим меланин. Термин используют для клеток, ещё не приступивших к дифференцировке и, соответственно, не содержащих пигмент. У теплокровных (млекопитающих и птиц) в ходе дифференцировки меланобластов образуются меланоциты, у хладнокровных (рыб, земноводных и рептилий) из них развиваются меланофоры. У всех позвоночных меланобласты образуются в нервном гребне зародышей и затем мигрируют в эпидермис. Нарушение…

Периодонт (лат. periodontium) — соединительная ткань, находящихся в щелевидном пространстве между цементом корня зуба и пластинкой альвеолы. Его средняя ширина составляет 0,20-0,25 мм. Наиболее узкий участок периодонта находится в средней части корня зуба, а в апикальном и маргинальном отделах его ширина несколько больше.

Мегакариоциты — это гигантские клетки костного мозга. Они имеют крупное ядро. От них отшнуровываются тромбоциты, представляющие собой фрагменты цитоплазмы мегакариоцитов, окруженные мембраной.

Читайте также:  Последовательность прохождения света от роговицы до сетчатки

Клетки Ито (синонимы: звёздчатая клетка печени, жирозапасающая клетка, липоцит, англ. Hepatic Stellate Cell, HSC, Cell of Ito, Ito cell) — перициты, содержащиеся в перисинусоидальном пространстве печёночной дольки, способные функционировать в двух различных состояниях — спокойном и активированном. Активированные клетки Ито играют главную роль в фиброгенезе — формировании рубцовой ткани при повреждениях печени.

Уротелий (переходноклеточный, переходный эпителий) покрывает пути мочеполового выделения, уротелий является многослойным эпителием эпидермоидного гистиотипа. Выстилает почечные лоханки, мочеточники, мочевой пузырь и проксимальную часть уретры. В зависимости от локализации имеет толщину в 5–8 слоев клеток.

Основной внутренний белок волокон хрусталика (англ. major intrinsic protein of lens fiber, MIP) — белок группы аквапоринов, водный канал, является родовым представителем одноимённого семейства белков, одно из его устаревших названий — аквапорин 0. Специфичен для волокон хрусталика глаза, эпителиальных клеток, образующих вещество хрусталика. Ген MIP образует кластер с аквапоринами 2, 5 и 6 в 12-й хромосоме человека.

Костный мозг — важнейший орган кроветворной системы, осуществляющий гемопоэз, или кроветворение — процесс создания новых клеток крови взамен погибающих и отмирающих. Он также является одним из органов иммунопоэза. Для иммунной системы человека костный мозг вместе с периферическими лимфоидными органами является функциональным аналогом так называемой фабрициевой сумки, имеющейся у птиц.

Холангиоциты — клетки эпителиального фенотипа, выстилающие внутри- и внепечёночные жёлчные протоки. Функции этих клеток связаны с регулированием секреции жёлчи, а дисфункционализация эпителиальных тканей жёлчных путей ассоциирована со специфическими заболеваниями — холангиопатиями.

Цилиопатии — генетически обусловленные заболевания, возникающие при нарушении структуры или функции цилий.

Межкле́точные конта́кты — молекулярные комплексы, обеспечивающие соединения между смежными клетками или между клеткой и внеклеточным матриксом (ВКМ). Межклеточные контакты критически важны для жизнеспособности многоклеточных организмов. Среди контактов, опосредующих соединение двух клеток, выделяют плотные контакты, которые регулируют межклеточный транспорт и предотвращают диффузию мембранных белков; адгезивные контакты, которые связывают актиновый цитоскелет примыкающих друг к другу клеток; десмосомы…

Эпе́ндима (др.-греч. ἐπένδυμα — «эпендима» (род верхней одежды); от ἐπι- — приставка, обозначающая пребывание на чем-либо или помещение на что-либо + ἔνδυμα — «одеяние, покров»); син.: эпендимный слой, эпителий эпендимальный, эпителий эпендимный — тонкая эпителиальная мембрана, выстилающая стенки желудочков мозга и центральный канал (лат. canalis centralis) спинного мозга.

Альтерати́вные проце́ссы (альтера́ция, повреждение, процессы повреждения) — совокупность нарушений метаболизма и деструктивных изменений в клетках и тканях организма.

Альвеолоци́т (альвеоци́т, пневмоци́т) — клетка плоского эпителия, выстилающего стенки лёгочных альвеол. Альвеолярный эпителий неоднороден и представлен клетками трёх типов.

Меланосома — это органелла, содержащаяся в клетках царства животных, имеющая в составе меланин и другие светопоглощающие пигменты.

Лимб роговицы, край роговицы — место сочленения роговицы со склерой: разделительная полоса между роговицей и склерой шириной в 1,0-1,5 миллиметра. Как многое в глазу, малый размер его отдельной части не исключает критической важности для нормальной работы всего органа в целом. В лимбе располагается много сосудов, которые принимают участие в питании роговицы. Лимб является важной ростковой зоной для эпителия роговицы. Существует целая группа глазных болезней, причиной которой является повреждение…

Лимфати́ческий у́зел (лимфоузел) — периферический орган лимфатической системы, выполняющий функцию биологического фильтра, через который протекает лимфа, поступающая от органов и частей тела.

Гранулоци́ты, или зернистые лейкоциты, — подгруппа белых клеток крови, характеризующихся наличием крупного сегментированного ядра и присутствием в цитоплазме специфических гранул, выявляемых в световой микроскоп при обычном окрашивании. Гранулы представлены крупными лизосомами и пероксисомами, а также видоизменениями этих органоидов.

Бруце́ллы (лат. Brucella) — род бактерий из семейства Brucellaceae класса альфа-протобактерий. Назван в честь шотландского военного врача Дэвида Брюса, который первым выделил и описал микроогранизмы на Мальте в 1887 году.

Грамотрица́тельные бакте́рии — бактерии, которые не окрашиваются кристаллическим фиолетовым при окрашивании по Граму. В отличие от грамположительных бактерий, которые сохраняют фиолетовую окраску даже после промывания обесцвечивающим растворителем (спирт), грамотрицательные полностью обесцвечиваются. После промывания растворителем при окрашивании по Граму добавляется контрастный краситель (обычно сафранин), который окрашивает все грамотрицательные бактерии в красный или розовый цвет. Это происходит…

Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Поражения челюстных костей разнообразны. В известном руководстве по онкоморфологии, выпускавшемся Институтом патологии Вооружённых сил США, в томе, посвящённом опухолям и опухолеподобным процессам челюстных костей (2001), описано 71 заболевание.

Катепсин L2 (также катепсин V, иногда именуется катепсин V/L2) — катепсин человека, кодируемый геном CTSL2 на 9-й хромосоме. Впервые описан в 1998 году; индекс L2 говорит о высоком сходстве белка с катепсином L. Экспрессия белка отмечается преимущественно в многослойном эпителии и особенно сильна в эпителии роговицы. Катепсин L2 является цистеиновой протеазой.

Гемопоэтические стволовые клетки (ГСК, также называемые гемоцитобластами) — это самые ранние предшественники клеток крови, которые дают начало всем остальным клеткам крови и происходят от гемангиобластов и прегемангиобластов, а те, в свою очередь — от клеток первичной эмбриональной мезодермы. Гемопоэтические стволовые клетки находятся в красном костном мозгу, который, в свою очередь, находится внутри полостей большинства костей.

Подробнее: Гемоцитобласт

Церумино́зные же́лезы (лат. glandula ceruminosa) — трубчатые экзокринные железы, которые расположены у человека и других млекопитающих под кожей наружного слухового прохода и вырабатывают секрет, который при смешивании с кожным салом и мёртвыми клетками эпидермиса образует ушную серу. Последняя представляет собой жёлто-коричневое смазкообразное вещество, которое служит для очистки и смазки слуховых каналов, а также обеспечивает их защиту (являясь барьером для посторонних частиц и обладая определёнными…

Внеклеточные везикулы — это крошечные внеклеточные пузырьки, которые выделяют клетки различных тканей или органов в окружающую их среду.

Основное вещество роговицы, или строма роговицы, — прозрачный слой, составляющий основную часть роговой оболочки глаза. Строма образована множеством ламелл — параллельно расположенных пластинок, сплетённых из волокон коллагена. Длина коллагеновых волокон составляет 24-25 нм; расстояние между ними одинаково у разных особей одного вида, но у разных видов варьирует от 31 до 77 нм.

Источник