Рецепторы воспринимающие свет находятся в сетчатке



1. Что такое анализатор? Как он устроен?

Анализатор – система, обеспечивающая восприятие, доставку в мозг и анализ в нём какого – либо вида информации (зрительной, слуховой, обонятельной и другие).

Все анализаторы состоят из 3 основных частей:

• Рецептор (периферический отдел): рецепторы воспринимают раздражение и преобразуют энергию раздражителя (света, звука, температуры) в нервные импульсы.

• Проводящие нервные пути (проводниковый отдел)

• Центральный отдел: нервные центры в определенных областях коры больших полушарий головного мозга, в которой осуществляется превращение нервного импульса в специфическое ощущение.

2. Чем представлены периферический, проводниковый и центральный отделы зрительного анализатора?

Периферический отдел: палочки и колбочки сетчатки. Проводниковый отдел: зрительный нерв, верхние бугры четверохолмия (средний мозг) и зрительные ядра таламуса. Центральный отдел: зрительная зона коры больших полушарий (затылочная область).

3. Перечислите структуры вспомогательного аппарата глаза и их функции.

К вспомогательному аппарату глаза относят брови и ресницы, веки, слёзную железу, слёзные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды. Брови отводят стекающий со лба пот, а также брови и ресницы защищают глаза от пыли. Слёзная железа вырабатывает слезную жидкость, которая, при моргании, смачивает, дезинфицирует и очищает глаз. Избыток жидкости и собирается в углу глаза и отводится через слёзные канальцы в полость носа. Веки защищают глаз от световых лучей, пыли; моргание (периодическое смыкание и размыкание век) обеспечивает равномерное распределение слезной жидкости по поверхности глазного яблока. Благодаря глазодвигательным мышцам мы можем следить за движущимися предметами не поворачивая головы. Сосуды обеспечивают питание глаза и его вспомогательных структур.

4. Как устроено глазное яблоко?

Глазное яблоко имеет форму шара и располагается в специальном углублении черепа – глазнице. Стенка глазного яблока состоит из трех оболочек: наружной фиброзной, средней сосудистой и сетчатки. Полость глазного яблока заполнена бесцветным и прозрачным стекловидным телом. Фиброзная оболочка – наружная белковая оболочка глаза, полностью покрывающая его и служащая для защиты остальных частей глаза. В ней выделяют заднюю непрозрачную часть – белочную оболочку (склера) и переднюю прозрачную – роговицу. Роговица выпуклая вперед, она не имеет кровеносных сосудов и в ней происходит наибольшее преломление световых лучей. Сосудистая оболочка располагается под фиброзной, в ней выделяют собственно сосудистую оболочку (лежит под склерой, пронизана множеством сосудиков и обеспечивает питание глаза), ресничное тело, и радужку. Клетки радужки содержат меланин, от которого и зависит цвет глаз. В центре радужки находится небольшое отверстие – зрачок, способный расширяться или сужаться в зависимости от количества света, попадающего на глаз или от влияния симпатической и парасимпатической нервной системы. Непосредственно за зрачком лежит хрусталик (прозрачное двояковыпуклое образование диаметром до 1 см). Внутренняя оболочка глаза – сетчатка, состоящая из рецепторов (палочек и колбочек) и нервных клеток, соединяющих все рецепторы в единую сеть и передающих информацию в зрительный нерв. Большинство колбочек размещается в сетчатке напротив зрачка, в жёлтом пятне (место наилучшего видения). Рядом с жёлтым пятном, в месте выхода зрительного нерва, находится участок сетчатки лишенный рецепторов — слепое пятно.

5. Какое значение имеет способность хрусталика менять свою кривизну?

Благодаря изменениям кривизны хрусталика изображение в глазу четко фокусируется на поверхности сетчатки в одной точке, что можно сравнить с наведением резкости на фотоаппарате.

6. Какую функцию выполняет зрачок?

Зрачок регулирует количество света, поступающего в глаз. Расширение зрачка при малой освещенности и его сужение при ярком освещении получило название аккомодационной способности глаза.

7. Где располагаются палочки и колбочки, в чём их сходство и различия?

Палочки и колбочки располагаются в сетчатке. И палочки, и колбочки являются фоторецепторами, лежат единым слоем и содержат специфические белки, молекулы которых возбуждаются под действием света. Они различаются по форме и степени чувствительности к свету и цвету. Колбочки – фоторецепторы, воспринимающие очертания и детали объектов и обеспечивающие цветовое зрение. По трехкомпонентной теории света существует три типа колбочек, каждый из которых лучше воспринимает определенный цвет: красно-оранжевый, желто-зеленый, сине-фиолетовый. Палочки – фоторецепторы, обеспечивающие черно-белое зрение и обладающие высокой чувствительностью к свету. Колбочки менее чувствительны к свету, чем палочки. Поэтому в сумерках зрение обеспечивается только палочками, из-за чего в этих условиях человек плохо различает цвета.

8. В какой части глаза находятся рецепторы, воспринимающие свет и преобразующие его в нервный импульс?

Фоторецепторы (палочки и колбочки) находятся в сетчатке.

9. Где расположено слепое пятно?

Рядом с жёлтым пятном, в месте выхода зрительного нерва, находится участок сетчатки лишенный рецепторов — слепое пятно.

10. В какой части сетчатки формируется наиболее чёткое цветное изображение? С чем это связано?

Читайте также:  Ангиопатия сетчатки при сотрясении головного мозга

Наиболее четкое изображение предметов формируется в желтом пятне, области в центральной части сетчатки, в которой колбочки расположены с максимальной плотностью, а палочки отсутствуют. На желтое пятно проецируются световые лучи от той точки, на которую направлен наш взгляд.

11. Опишите работу зрительного анализатора от поступления света на орган зрения до формирования зрительного образа в головном мозге.

Свет поступает на глазное яблоко, глазодвигательные мышцы обеспечивают оптимальное его положение. Свет проходит через прозрачную роговицу и зрачок и попадает на хрусталик. Хрусталик обеспечивает фокусировку изображения на сетчатке, после прохождения его через прозрачное стекловидное тело. На сетчатке изображение получается уменьшенным и перевернутым. Свет на сетчатке вызывает возбуждение фоторецепторов и преобразование света в нервные импульсы. Нервные импульсы передаются в головной мозг через зрительный нерв. Зрительные нервы проникают в череп через специальные отверстия и сходятся вместе, а затем внутренние части нерва перекрещиваются и снова расходятся, формируя зрительные тракты. В результате все, что мы видим справа, оказывается в левом зрительном тракте, а то, что слева, в правом. Зрительные тракты заканчиваются в верхних буграх четверохолмия среднего мозга и зрительных буграх таламуса, где информация проходит дополнительную обработку. Окончательная обработка информации происходит в зрительных зонах затылочных долей обоих полушарий, там изображение снова переворачивается «с головы на ноги».

12. В чём причина таких нарушений зрения, как близорукость и дальнозоркость? Какие процессы корректируют линзами очков? Расскажите о профилактике этих заболеваний.

Близорукость – нарушение зрения, при котором изображение формируется перед сетчаткой. Близорукий человек четко видит только близко расположенные предметы. Дальнозоркость – нарушение зрения, при котором изображение формируется перед сетчаткой. Человек с такой патологией лучше видит предметы, расположенные на расстоянии. Причины таких патологий бывают врожденными и приобретенными. К врожденным относятся врожденные удлиненное (близорукость) или укороченное (дальнозоркость) глазное яблоко. К приобретенным относятся увеличение кривизны хрусталика или ослабление ресничной мышцы (близорукость); уплотнение хрусталика, приводящее к потере его эластичности и уменьшению кривизны (дальнозоркость, чаще встречается у стариков). Линзы очков создают дополнительное рассеивание света при дальнозоркости или больший угол преломления при близорукости.

Профилактика этих заболеваний состоит в соблюдении определенной гигиены зрения. К этому можно отнести занятия зрительной гимнастикой при утомлении глаз, чтение и письмо при достаточном освещении, так чтобы для правшей свет падал слева, а для левшей справа. Расстояния от глаза до предмета должно составлять 30-35 см; после каждых 30-40 мин работы за компьютером необходимо делать 10-15 мин перерывы, при просмотре телевизора расстояние до него должно быть не менее 2,5 -3 м и время просмотра не должно превышать 30-40 мин в день. В вечернее время при работе за компьютером или при просмотре телевизора необходимо включать освещение.

13. Почему говорят, что глаз смотрит, а мозг видит?

Глаз является только периферическим отделом зрительного анализатора, обработка же изображений происходит в коре больших полушарий. При травмах затылочной доли человек перестает видеть, то есть изображение формируется на сетчатке глаза, он как бы смотрит, но не распознает и не узнает предметы, он их не видит.

Источник

Глазное яблоко состоит из трех слоев (оболочек):

  • наружная – белочная – защищает глаз, видоизменение – роговица;
  • средняя – сосудистая – снабжает глаз кровью, видоизменения – радужная оболочка и ресничная мышца;
  • внутренняя – сетчатка – содержит зрительные рецепторы.

Роговица – это самая передняя часть глаза. Роговица прозрачная (пропускает свет) и выпуклая (преломляет свет).

За роговицей находится радужная оболочка, в центре которой расположено отверстие – зрачок. Радужная оболочка состоит из мышц, которые могут изменять размер зрачка – так регулируется количество света, поступающего в глаз. В состав радужной оболочки входит пигмент меланин, который поглощает вредные ультрафиолетовые лучи, от его количества зависит «цвет глаз».

За зрачком находится хрусталик – прозрачная капсула, заполненная жидкостью. За счет собственной упругости хрусталик стремится стать выпуклым, при этом глаз фокусируется на близких предметах. При расслаблении ресничной мышцы связки, удерживающие хрусталик, натягиваются и он становится плоским, глаз фокусируется на дальних предметах. Такое свойство глаза называется аккомодация.

За хрусталиком располагается стекловидное тело, заполняющее глазное яблоко изнутри (преломляет свет). Это третий, последний компонент преломляющей (оптической) системы глаза (роговица – хрусталик – стекловидное тело), в результате ее работы на сетчатке получается уменьшенное и перевернутое изображение.

Сетчатка находится за стекловидным телом, на внутренней поверхности глазного яблока. Она состоит из зрительных рецепторов – палочек и колбочек. Палочки находятся в основном на периферии сетчатки, они дают черно-белое изображение, но зато им достаточно слабого освещения. Колбочки сосредоточены в центре сетчатки, они дают цветное изображение, требуют яркого света. В сетчатке имеются два пятна: желтое (в нем самая высокая концентрация колбочек) и слепое (в нем нет рецепторов, из этого места выходит зрительный нерв).

Читайте также:  Мкб тромбоз центральной вены сетчатки

Рисунки

Рецепторы воспринимающие свет находятся в сетчатке

Тесты

889-01. Рецепторы, воспринимающие свет, находятся в
А) радужке
Б) сетчатке
В) хрусталике
Г) стекловидном теле

889-02. Что называют слепым пятном?
А) участок сетчатки, на который не падает изображение
Б) место выхода зрительного нерва от сетчатки
В) часть хрусталика, в котором не преломляется свет
Г) часть зрачка, отражающая избыточный свет

889-03. С какими изменениями в строении глазного яблока связано нарушение цветового зрения?
А) удлинение глазного яблока
Б) ослабление ресничных мышц
В) отсутствие некоторых пигментов в колбочках
Г) длительное сужение зрачка

889-04. Превращение световой энергии в нервные импульсы происходит в
А) сетчатке
Б) роговице
В) стекловидном теле
Г) хрусталике

889-05. Часть глаза, меняющая свою преломляющую способность в зависимости от степени удаленности рассматриваемого предмета, – это
А) роговица
Б) передняя камера
В) хрусталик
Г) зрачок

889-06. Что воспримут изображённые на рисунке рецепторные клетки?
Рецепторы воспринимающие свет находятся в сетчатке
А) свет
Б) звук
В) растворённое вещество
Г) прикосновение

889-07. Какой буквой на рисунке обозначен зрительный нерв?
Рецепторы воспринимающие свет находятся в сетчатке

889-08. На рисунке изображена схема строения глаза. Какой буквой на ней обозначена белочная оболочка?
Рецепторы воспринимающие свет находятся в сетчатке

889-09. На рисунке изображена схема глаза. Какой буквой на ней обозначен хрусталик?
Рецепторы воспринимающие свет находятся в сетчатке

889-10. Какой буквой на рисунке обозначены мышцы, изменяющие кривизну хрусталика глаза?
Рецепторы воспринимающие свет находятся в сетчатке

889-11. В какой части глазного яблока происходит фокусировка изображения у людей с нормальным зрением?
А) в области жёлтого пятна
Б) перед хрусталиком
В) в области сосудистой оболочки
Г) перед сетчаткой

889-12. Какой буквой на рисунке обозначена структура глаза, нарушение в которой может стать одной из причин развития близорукости?
Рецепторы воспринимающие свет находятся в сетчатке

889-13. Определите название структуры глаза по её описанию: «Оболочка, представляющая собой капсулу цвета варёного белка, защищающая внутреннее ядро и сохраняющая его форму».
А) склера
Б) радужка
В) сетчатка
Г) стекловидное тело

889-14. С помощью чего человек различает цвета?
А) колбочек
Б) палочек
В) хрусталика
Г) стекловидного тела

889-15. Какие образования глаза позволяют человеку видеть в сумеречное время?
А) колбочки
Б) роговица
В) хрусталик
Г) палочки

889-16. На рисунке изображена схема строения глаза. Какой буквой на ней обозначен зрачок?
Рецепторы воспринимающие свет находятся в сетчатке

889-17. Как называют место на сетчатке, откуда «выходит» зрительный нерв?
А) желтое пятно
Б) слепое пятно
В) темное пятно
Г) округлое пятно

889-18. В какой части органа зрения происходит преобразование энергии света в нервные сигналы?
А) колбочках и палочках
Б) стекловидном теле
В) хрусталике
Г) радужной оболочке

889-19. Что называют слепым пятном?
А) участок сетчатки, на который не попадают солнечные лучи
Б) участок сетчатки, в котором отсутствуют палочки и колбочки
В) часть хрусталика, в котором не преломляются солнечные лучи
Г) участок зрачка, отражающий избыточный солнечный свет

889-20. Какой буквой на рисунке обозначена структура глазного яблока, входящая в оптическую систему глаза?
Рецепторы воспринимающие свет находятся в сетчатке

889-21. Какой(-ие) элемент(-ы) глазного яблока меняет(-ют) свою преломляющую способность в зависимости от степени удалённости рассматриваемого предмета?
А) стекловидное тело
Б) палочки и колбочки
В) хрусталик
Г) роговица

889-22. В глазном яблоке человека за стекловидным телом следует
А) хрусталик
Б) сетчатка
В) роговица
Г) передняя камера

Еще можно почитать

Дмитрий Поздняков БИОЛОГИЯ оглавление
ЗЗУБРОМИНИМУМ: готовимся к ЕГЭ быстро
«БИОРОБОТ» — это онлайн-тестирование

Источник

Фоторецепторы — светочувствительные сенсорные нейроны сетчатки глаза. Фоторецепторы содержатся во внешнем зернистом слое сетчатки. Фоторецепторы отвечают (а не , как другие нейроны) в ответ на адекватный этим рецепторам сигнал — свет. Фоторецепторы размещаются в сетчатке очень плотно, в виде шестиугольников (гексагональная упаковка)[1][2][3][4].

Классификация фоторецепторов[править | править код]

Maurolicus muelleri

К фоторецепторам в сетчатке глаза человека относятся 3 вида колбочек (каждый тип возбуждается светом определённой длины волны), которые отвечают за цветное зрение, и один вид палочек, который отвечает за сумеречное зрение. В сетчатке глаза человека насчитывается 110 ÷ 125 млн палочек и 4 ÷ 7 млн колбочек[5].

У глубоководной морской рыбы Maurolicus muelleri[en] фоторецепторы дополнены «палочковидными колбочками» («палочкоколбочками», англ. rod-like cones), объединяющими свойства палочек и колбочек и предназначенные для острого зрения при умеренном освещении[6][7].

Сравнение палочек и колбочек[править | править код]

Таблица, иллюстрирующая различия между палочками и колбочками (по книге Эрика Канделя «Принципы науки о нейронах»[8])

Читайте также:  Глазные болезни у людей отслоение сетчатки

ПалочкиКолбочки
Используются для ночного зрения (в условиях слабой освещенности)Используются для дневного зрения (в условиях высокой освещенности)
Высокочувствительны; воспринимают и рассеянный светНе очень чувствительны к свету; реагируют только на прямой свет
Повреждение вызывает никталопию (гемералопию)Повреждение вызывает слепоту, дневную слепоту, ахроматопсию
Низкая острота зренияВысокая острота зрения; лучшее пространственное разрешение
Нет в центральной ямкеСосредоточены в центральной ямке
Замедленная реакция на светБыстрая реакция на свет, могут воспринимать более быстрые изменения у раздражителя
Имеют больше пигмента, чем колбочкиИмеют меньше пигмента
Мембранные диски не привязаны непосредственно к клеточной мембранеМембранные диски крепятся к наружной мембране
В 20 раз больше, чем колбочек, по количеству.
Один тип фоточувствительного пигментаТри типа фоточувствительных пигментов у человека
Ср. Ахроматическое зрение Ср. Цветное зрение

Связи между фоторецепторами[править | править код]

У позвоночных животных существуют горизонтальные связи между однотипными фоторецепторами (например, между колбочками с одинаковой чувствительностью), а в некоторых случаях — и между рецепторами разного типа[9][10][11]. В сетчатке приматов связей между палочками не обнаружено[12]. Несмотря на это, фоторецепторы на их освещение отвечают так, будто между ними есть связи. При освещении одного рецептора происходит его гиперполяризация. Если бы не было связей между фоторецепторами, то такое воздействие давало бы единственный отреагировавший фоторецептор сетчатки человека. Однако, опыты показывают, что соседние рецепторы тоже гиперполяризируются. Вероятное объяснение этого парадокса состоит в том, что колбочки центральной ямки расположены очень плотно, и изменение мембранного потенциала одного фоторецептора перетекает на соседние.

См. также[править | править код]

  • Глазки Гессе

Примечания[править | править код]

  1. ↑ Хьюбел Д. Глаз, мозг, зрение. — М.: Мир, 1990. — 240 с.
  2. ↑ Меденников П. А., Павлов Н. Н. Гексагональная пирамида как модель структурной организации зрительной системы // Сенсорные системы. — 1992. — т.6 № 2 — с.78-83.
  3. ↑ Лебедев Д. С., Бызов А. Л. Электрические связи между фоторецепторами способствуют выделению протяженных границ между разнояркими полями // Сенсорные системы. — 1988. — т.12, № 3. — с. 329—342.
  4. ↑ Watson A. B., Ahumada A. J. A hexahonal orthogonal-oriented pyramid as a model of image representation in visual cortex// IEEE Transactions on Biomedical Engineering. — Vol. 36, № 1 — pp.97-106.
  5. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с.
  6. de Busserolles F. et al. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides : [англ.] // Science Advances. — 2017. — Vol. 3, no. 11. — P. 1—12 (eaao4709). — doi:10.1126/sciadv.aao4709.
  7. ↑ У глубоководной рыбки нашли новый тип зрительных рецепторов — «палочкоколбочки», Индикатор. Дата обращения 14 декабря 2017.
  8. Kandel, E. R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science (неопр.). — 4th. — New York: McGraw-Hill Education, 2000. — С. 507—513. — ISBN 0-8385-7701-6.
  9. ↑ Школьник-Яррос Е. Г. , Калинина А. В. Нейроны сетчатки. — М.: Наука, 1986. — 208 с.
  10. ↑ Измайлов И. А., Соколов Е. Н., Чернорызов А. М. Психофизиология цветового зрения. — М.: Изд-во Московского университета, 1989. — 206 с
  11. ↑ Ноздрачев А. Д. Общий курс физиологии человека и животных. Т.1, — М.: Высшая школа, 1991. −512 с.
  12. ↑ Hoyenga K. B., Hoyenga K. T. Psychobiology: the neuron and behavior. — Western Illinois University.: Brooks/ Cole Publishing Company Pacific Grove, California, 1988.

Ссылки[править | править код]

  • Особенности цветного зрения у различных млекопитающих

Гистология: Нервная ткань

Нейроны
(Серое вещество)
  • Перикарион
  • Аксон
    • Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты
  • Конус роста
  • Аксонный транспорт
  • Валлерова дегенерация
  • Дендрит
    • Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит
  • Дендритная пластичность
  • Дендритный потенциал действия

типы
Биполярные нейроны
Униполярные нейроны
Псевдоуниполярные нейроны
Мультиполярные нейроны
Пирамидальный нейрон
Звёздчатый нейрон
Клетка Пуркинье
Гранулярная клетка
Интернейрон
Клетка Реншоу

Афферентный нерв/
Сенсорный нейрон
  • GSA
  • GVA
  • SSA
  • SVA
  • Нервные волокна
    • Мышечные веретёна (Ia), Нервно-сухожильное веретено (Ib), II или Aβ-волокна, III или Aδ-волокна, IV или C-волокна
Эфферентный нерв/
Моторный нейрон
  • GSE
  • GVE
  • SVE
  • Верхний мотонейрон
  • Нижний мотонейрон
    • α мотонейроны, γ мотонейроны
Синапс
  • Химический синапс
  • Нервно-мышечный синапс
  • Эфапс (Электрический синапс)
  • Нейропиль
  • Синаптический пузырёк
Сенсорный рецептор
  • Тельце Мейснера
  • Тельце Меркеля
  • Тельце Пачини
  • Тельце Руффини
  • Нервно-мышечное веретено
  • Свободное нервное окончание
  • Обонятельный нейрон
  • Фоторецепторные клетки
  • Волосковые клетки
  • Вкусовая луковица
Нейроглия
  • Астроциты
    • Радиальная глия
  • Олигодендроциты
  • Клетки эпендимы
    • Танициты
  • Микроглия
Миелин
(Белое вещество)
ЦНС
ОлигодендроцитыПНС
Шванновские клетки
Нейролемма
Перехват Ранвье/Межузловой сегмент
Насечка миелина
Соединительная ткань
  • Эпиневрий
  • Периневрий
  • Эндоневрий
  • Пучки нервных волокон
  • Мозговые оболочки: твёрдая, паутинная, мягкая

Источник