Развитие сетчатки глазного яблока
Орган зрения
(oculus)
представлен глазным яблоком, расположенным
в орбите, и вспомогательным аппаратом
(веки, слезный аппарат и глазодвигательные
мышцы).
Развитие.
Глаз развивается из нескольких
источников. Из мозгового пузыря
образуются 2 выпячивания — глазные
пузырьки. Передняя стенка глазных
пузырьков впячивается, в результате
чего из каждого глазного пузырька
образуется глазной бокал, связанный
с нервной трубкой при помощи полого
стебелька и состоящий из 2 стенок:
наружной и внутренней. Из наружной
стенки развивается пигментный слой
сетчатки, из внутренней — нейронный
слой сетчатки. Из краев глазного бокала
развиваются мышца, суживающая зрачок,
и мышца, расширяющая зрачок. Белочная
и сосудистая оболочки, радужка,
цилиарное тело и соединительнотканная
основа роговицы глаза развиваются из
мезенхимы; передний эпителий роговицы
глаза и хрусталик — из кожной эктодермы.
Развитие хрусталика
происходит следующим образом. В то
время, когда образуется глазной бокал,
кожная эктодерма, расположенная
напротив бокала, утолщается и впячивается
в бокал. Это впячивание отделяется от
эктодермы и в процессе развития
превращается в хрусталик.
Стекловидное тело
развивается за счет мезенхимы с участием
кровеносных сосудов.
Тканевое строение.
Глазное яблоко
(bulbus
oculi)
содержит 3 оболочки. Снаружи располагается
фиброзная оболочка (tunica
fibrosa),
состоящая из 2 частей: передней части
(роговицы) и белочной оболочки, или
склеры. Под белочной оболочкой находится
сосудистая оболочка (choroidea),
а под ней — сетчатая оболочка (retina).
Глазное яблоко
включает 3 системы (аппарата):
1) диоптрический,
или светопреломляющий, аппарат,
состоящий из роговицы глаза, жидкости
передней и задней камер глаза, хрусталика
и стекловидного тела;
2) аккомодационный
аппарат,
представленный цилиарным телом и
ресничным пояском; в состав этого
аппарата также входит радужная оболочка,
которую следовало бы отнести к
адаптационному аппарату;
3) световоспринимающий
аппарат,
представленный сетчаткой глаза.
Фиброзная оболочка.
Эта оболочка состоит из белочной
оболочки, или склеры, и передней части
— роговой оболочки. Белочная
оболочка имеет
толщину около 0,6 мм, состоит из
соединительнотканных пластин, каждая
из которых образована слоем параллельно
расположенных волокон. Между пластинами
находятся основное межклеточное вещество
и фибробласты. На границе склеры и
роговицы имеется шлеммов канал (венозный
синус), в котором циркулирует жидкость.
В шлеммов канал происходит отток жидкости
из передней камеры глаза.
Функции склеры:
1) защитная, 2) формообразующая и 3)
опорная, так как к ней прикрепляются
глазодвигательные мышцы.
Роговица
(cornea)
имеет форму выпукло-вогнутой линзы, т.
е. собирает лучи, ее коэффициент
преломления равен 1,37.
Роговица имеет 5 слоев:
1) передний (наружный)
эпителий;
2) передняя пограничная
мембрана (lamina
limitans
anterior);
3) собственное
вещество роговицы (substantia
propria
corneae);
4) задний
пограничный
слой
(stratum limitans posterior);
5) задний эпителий
(epithelium
posterioris).
Передний эпителий
представлен многослойным плоским
неороговевающим эпителием, включающим
3 слоя: базальный, шиповатый и плоский.
Эпителий богато иннервирован свободными
нервными окончаниями, легкопроницаем
для газов и жидких веществ. Эпителий
лежит на базальной мембране, состоящей
из 2 слоев: наружного и внутреннего.
Передняя пограничная
пластинка
(боуменова оболочка) представлена
аморфным веществом, в котором проходят
тонкие коллагеновые фибриллы. Толщина
пластинки 6-10 мкм.
Собственное
вещество роговицы
представлено соединительнотканными
пластинками, состоящими из параллельно
расположенных волокон. Пластина состоит
из 1000 коллагеновых волокон толщиной
0,3-0,6 мкм. Между пластинками находятся
фибробласты и основное межклеточное
вещество, богатое прозрачными
сульфатированными гликозаминогликанами.
Отсутствием в роговице кровеносных
сосудов и наличием в ней прозрачных
сульфатированных гликозаминогликанов
объясняется ее прозрачность. Питание
роговицы осуществляется за счет
кровеносных сосудов склеры и жидкости
передней камеры глаза.
Задняя пограничная
пластинка,
имеющая толщину около 10 мкм, представлена
аморфным веществом, в котором располагается
сеть тонких коллагеновых фибрилл.
Задний эпителий
представлен одним слоем плоских
эпителиоцитов полигональной формы.
Сосудистая оболочка
глаза (tunica
vasculosa
bulbi)
располагается кнутри от склеры. За
счет этой оболочки образуются цилиарное
тело и радужная оболочка.
В сосудистой оболочке
имеются 4 слоя:
1) наружный слой,
который называется надсосудистым
(stratum
supravasculare),
состоит из рыхлой соединительной
ткани, богатой пигментными клетками;
2) сосудистый слой
(stratum
vasculare),
состоит из сплетения мелких артерий и
вен, между которыми есть прослойки
соединительной ткани с многочисленными
пигментными клетками;
3) хориокапиллярный
слой (lamina
choriocapillaris),
сформирован за счет капилляров, отходящих
от сосудов сосудистого слоя. Капилляры
имеют разный диаметр на протяжении,
переходят в синусоиды. Между петлями
капилляров располагаются прослойки
соединительной ткани, пигментные клетки,
фибробласты;
4) базальный комплекс
(complexus
basalis),
состоит из поверхностного коллагенового
слоя с зоной эластических волокон,
глубокого слоя, образованного за счет
коллагеновых волокон, и базальной
мембраны, к которой прилежат эпителиоциты
пигментного слоя сетчатки глаза. Толщина
базального комплекса 4 мкм.
Функция сосудистой
оболочки —
трофическая.
Сетчатая оболочка.
Сетчатка
глаза (retina)
— световоспринимающий аппарат,
располагающийся кнутри от сосудистой
оболочки. В сетчатке имеются
светочувствительная часть, расположенная
в заднем отделе глаза, и несветочувствительная
часть, расположенная ближе к ресничному
телу.
Светочувствительная
часть сетчатки
включает слой пигментного эпителия и
нейронный слой, который включает еще 9
слоев + пигментный слой = 10 слоев. Нейронный
слой состоит из цепи 3 нейронов:
1) фоторецепторные
(палочковые — cellula
neurosensorius
bacillifer,
колбочковые — cellula
neurosensorius
conifer);
2) ассоциативные
нейроны (биполярные, горизонтальные,
амокринные);
3) ганглионарные,
или мультиполярные, клетки (neuronum
multipolare).
За счет ядросодержащих
частей этих нейронов образуется 3
слоя; в частности, тела светочувствительных
нейронов образуют наружный ядерный
слой (stratum
nuclearis
externum);
тела ассоциативных нейронов — внутренний
ядерный слой (stratum
nuclearis
internum);
тела ганглионарных нейронов —
ганглионарный слой (stratum
ganglionare).
За счет отростков
этих 3 нейронов образуется еще 4 слоя; в
частности, палочки и колбочки дендритов
фоторецепторных нейронов образуют слой
палочек и колбочек (stratum
fotosensorium);
аксоны фоторецепторных нейронов и
дендриты ассоциативных нейронов в
местах их синаптических связей в
совокупности образуют наружный сетчатый
слой (stratum
plexiforme
externum);
аксоны ассоциативных нейронов и дендриты
ганглионарных в местах их синаптической
связи образуют внутренний сетчатый
слой (stratum
plexiforme
internum);
аксоны ганглионарных нейронов образуют
слой нервных волокон (stratum
neurofibrarum).
Таким образом, за
счет тел нейронов образуется 3 слоя и
за счет отростков еще 4 слоя, т. е. всего
7 слоев. А где же еще 3 слоя? Восьмым слоем
можно считать слой пигментных клеток
(stratum
pigmentosum).
Но где же еще 2 слоя? В состав нейронного
слоя сетчатки входят нейроглиальные
клетки, преимущественно волокнистые.
Они имеют вытянутую форму и располагаются
радиально, почему и называются
радиальными (gliocytus
radialis).
Периферические отростки радиальных
глио- цитов образуют сплетение между
слоем палочек и колбочек и наружным
ядерным слоем. Это сплетение называется
наружной глиальной пограничной
мембраной (stratum
limitans
externum).
Внутренние отростки этих глиоцитов
своим сплетением образуют внутренний
пограничный слой (stratum
limitans
internum),
расположенный на границе со стекловидным
телом.
Таким образом, за
счет тел нейронов, их отростков,
пигментного слоя и отростков радиальных
глиоцитов образуется 10 слоев:
1) пигментный слой;
2) слой палочек и
колбочек;
3) наружный
пограничный слой;
4) наружный ядерный
слой;
5) наружный сетчатый
слой;
6) внутренний ядерный
слой;
7) внутренний
сетчатый слой;
8) ганглионарный
слой;
9) слой нервных
волокон;
10) внутренний
пограничный слой.
Глаз человека
называется
инвертивным.
Это означает, что рецепторы фоторецепторных
нейронов (палочки и колбочки) направлены
не навстречу к световым лучам, а в
обратную сторону. В данном случае
палочки и колбочки направлены в
сторону пигментного слоя сетчатки
глаза. Чтобы луч света мог достигнуть
палочек и колбочек, ему необходимо
пройти внутренний пограничный слой,
слой нервных волокон, ганглионарный
слой, внутренний сетчатый, внутренний
ядерный, наружный сетчатый, наружный
ядерный, наружный пограничный и,
наконец, слой палочек и колбочек.
Местом наилучшего
видения
сетчатки является желтое пятно (macula
flava).
В центре этого пятна имеется центральная
ямка (fovea
centralis).
В центральной ямке резко истончены
все слои сетчатки, кроме наружного
ядерного, состоящего преимущественно
из тел колбочковых фоторецепторных
нейронов, являющихся рецепторными
приборами цветного видения.
Кнутри от желтого
пятна располагается слепое пятно
(macula
cecum)
— сосок зрительного нерва (papilla
nervi
optici).
Сосок зрительного нерва образован за
счет аксонов ганглионарных нейронов,
входящих в слой нервных волокон. Таким
образом, аксоны ганглионарных нейронов
образуют зрительный нерв (nervus
opticus).
Строение фотосенсорных
нейронов (первично
чувствующих
клеток).
Палочковые фотосенсорные нейроны
(neurocytus
photosensorius
bacillifer).
Их тела располагаются в наружном ядерном
слое. Участок тела вокруг ядра нейрона
называется
перикарионом.
От перикариона отходит центральный
отросток — аксон, который заканчивается
синапсом с дендритами ассоциативных
нейронов. Периферический отросток
— дендрит заканчивается фоторецептором
— палочкой.
Палочка
фоторецепторного нейрона
состоит из двух сегментов, или
члеников: наружного и внутреннего.
Наружный сегмент состоит из дисков,
количество которых достигает 1000. Каждый
диск представляет собой сдвоенную
мембрану.
Толщина диска 15 нм,
диаметр 2 мм; расстояние между дисками
15 нм, расстояние между мембранами внутри
диска 1 нм. Эти диски образуются следующим
образом. Цитолемма наружного членика
впячивается внутрь — образуется
сдвоенная мембрана. Затем эта сдвоенная
мембрана отшнуровывается, и образуется
диск.
В мембранах диска
имеется зрительный пурпур — родопсин,
состоящий из белка — опсина и альдегида
витамина А— ретиналя. Таким образом,
чтобы палочки функционировали, необходим
витамин А.
Наружный членик
соединен с внутренним при помощи
реснички, состоящей из 9 пар периферических
микротубул и 1 пары центральных
микротрубочек. Микротубулы прикрепляются
к базальному тельцу.
Во внутреннем
членике
содержатся органеллы общего значения
и ферменты. Палочки воспринимают
черно-белый цвет и являются приборами
сумеречного зрения. Количество палочковых
нейронов в сетчатке глаза человека
составляет около 130 миллионов. Длина
наиболее крупных палочек достигает
75 мкм.
Колбочковые
фоторецепторные нейроны
состоят из перикариона, аксона
(центрального отростка) и дендрита
(периферического отростка). Аксон
вступает в синаптическую связь с
ассоциативными нейронами сетчатки,
дендрит заканчивается фоторецептором,
называемым
колбочкой.
Колбочки отличаются от палочек
строением, формой и содержанием
зрительного пурпура, который в них
(колбочках) называется
йодопсином.
Наружный членик
колбочки состоит из 1000 полудисков.
Последние образуются путем впячивания
цитолеммы наружного сегмента, не
отшнуровываются от нее. Поэтому полудиски
остаются соединенными с цитолеммой
наружного сегмента. Наружный членик
соединяется с внутренним при помощи
реснички.
Внутренний членик
колбочки включает органеллы общего
значения, ферменты и эллипсоид, состоящий
из липидной капли, окруженной плотным
слоем митохондрий. Эллипсоиды играют
определенную роль в цветном восприятии.
Количество колбочковых
фоторецепторных нейронов в сетчатке
глаза человека составляет 6-7 миллионов,
они являются приборами цветного
зрения. В зависимости от того, какой тип
пигмента содержится в мембранах колбочек,
одни из них воспринимают красный цвет,
другие — синий, третьи — зеленый. При
помощи комбинации этих трех типов
колбочек человеческий глаз способен
воспринимать все цвета радуги. Наличие
или отсутствие того или иного пигмента
в колбочках зависит от наличия или
отсутствия соответствующего гена в
половой Х-хромосоме.
Если отсутствует
пигмент, воспринимающий красный цвет,
— это протанопия,
зеленый цвет — дейтеранопия.
Ассоциативные
нейроны сетчатки.
К ассоциативным нейронам сетчатой
оболочки глаза относятся биполярные,
горизонтальные и амокринные нейроциты.
Тела биполярных
нейроцитов
(neurocytus
bipolaris)
располагаются во внутреннем ядерном
слое. Их дендриты контактируют с
аксонами нескольких палочковых нейронов
и одним колбочковым, аксоны — с
дендритами ганглионарных нейронов.
Таким образом, биполярные нейроны
передают зрительные импульсы с
фоторецепторных на ганглионарные
нейроны.
Тела горизонтальных
нейроцитов
располагаются во внутреннем ядерном
слое ближе к фоторецепторным нейронам.
Дендриты горизонтальных нейронов
контактируют с аксонами фоторецепторных
нейронов, их длинные аксоны идут в
горизонтальном направлении и образуют
аксо-аксональные (тормозные) синапсы с
несколькими фоторецепторными клетками.
Благодаря горизонтальным нейронам
импульс, идущий в центральной части,
передается на биполярные клетки, а
импульс, проходящий латерально от
центра, тормозится в области
аксо-аксональных синапсов. Это называется
латеральным торможением, благодаря
которому обеспечивается четкость и
контрастность изображения на сетчатке.
Тела амокринных
нейроцитов
располагаются во внутреннем ядерном
слое, ближе к ганглионарным клеткам.
Амокринные клетки контактируют с
ганглионарными нейронами и выполняют
такую же функцию, как и горизонтальные
нейроны, но только по отношению к
ганглионарным нейронам.
Ганглионарные
(мулътиполярные) нейроциты
располагаются в ганглионарном слое
сетчатки. Их дендриты контактируют
с аксонами биполярных нейроцитов и с
амокринными клетками, а аксоны образуют
слой нервных волокон, которые,
соединяясь вместе в области соска
зрительного нерва, образуют зрительный
нерв.
Зрительный путь
начинается от рецепторов фоторецепторных
нейронов (палочек и колбочек), где под
влиянием световых лучей начинается
химическая реакция с последующим
распадом зрительного пигмента, происходит
повышение проницаемости цитолеммы
палочек и колбочек, в результате чего
возникает световой импульс. Этот импульс
передается сначала на биполярный, потом
на ганглионарный нейрон, затем
поступает на его аксон. Из аксонов
ганглионарных нейронов формируется
зрительный нерв, по которому импульс
направляется в сторону центральной
нервной системы. Через зрительное
отверстие (foramen
opticum)
зрительный нерв поступает в полость
черепа и подходит к перекресту зрительного
нерва (chiasma
opticum).
Здесь внутренние половинки нерва
перекрещиваются, а наружные идут не
перекрещиваясь. От зрительного перекреста
начинается зрительный тракт (tractus
opticus).
В составе зрительного тракта аксоны
ганглионарных нейронов сетчатки
направляются к 4-му нейрону, заложенному
в подушках зрительных бугров, латеральных
коленчатых телах и в верхних буграх
четверохолмия; аксоны четвертых нейронов,
заложенных в подушках зрительных
бугров и латеральных коленчатых телах,
направляются в шпорную борозду коры
головного мозга, где находится
центральный конец зрительного анализатора.
Пигментный слой
сетчатки глаза.
Слой пигментных эпителиоцитов сетчатой
оболочки глаза включает около 6 миллионов
пигментных клеток, которые своей
базальной поверхностью лежат на
базальной мембране сосудистой оболочки.
Светлая цитоплазма пигментных клеток
(меланоцитов) бедна органеллами общего
значения, содержит большое количество
пигмента (меланосом). Ядра меланоцитов
имеют сферическую форму. От апикальной
поверхности меланоцитов отходят
отростки (микроворсинки), которые заходят
между концами палочек и колбочек. Каждую
палочку окружают 6-7 таких отростков,
каждую колбочку — 40 отростков. Пигмент
этих клеток способен мигрировать из
тела клетки в отростки, а из отростков
в тело меланоцита. Эта миграция
осуществляется под влиянием
меланоцитостимулируюгцего гормона
промежуточной части аденогипофиза и
при участии филаментов внутри самой
клетки.
Функции пигментного
слоя сетчатки многочисленны:
1) является
составной частью адаптационного аппарата
глаза;
2) участвует в
торможении перекисного окисления;
3) выполняет
фагоцитарную функцию;
4) участвует в обмене
витамина А.
Соседние файлы в папке ответы по гистологии
- #
- #
- #
- #
- #
Источник
Быстрое развитие и усложнение организации зрительного анализатора в эмбриональном периоде составляет один из наиболее интересных разделов теоретической биологии. В практическом отношении этот вопрос важен с точки зрения выяснения причинной обусловленности организации в пространстве элементов структуры оптико-физиологической системы глаза, определяющих его основные характеристики: преломляющую способность (рефракцию) и остроту зрения.
С точки зрения морфогенеза и формообразования преломляющая способность глаза представляет собой систему наиболее тонкой сопряженности элементов структуры. Можно полагать, что данная характеристика обусловлена основополагающими биологическими законами развития, так как именно категория оптической сопряженности органа зрения составляет первичную основу для последующего его функционального развития.
Увидеть — значит своевременно обнаружить всю совокупность объектов в пространстве в их взаимоотношениях друг с другом. Другие органы чувств выполняют те же функции, но менее быстро и с несравненно более близких дистанций. Таким функциональным назначением зрительный анализатор выдвинут на передние рубежи эволюционного процесса, что должно способствовать накоплению в его основе наиболее качественного генофонда.
Орган зрения, как и все другие органы чувств, в ходе филогенетического развития претерпел сложную эволюцию, которая шла в направлении большего и лучшего приспособления глаза к восприятию окружающего мира. Простейшей формой зрения следует считать начало реакции на свет. Почти все живущее чувствительно к свету. У растений световая реакция проявляется гелиотропизмом (листья растений расположены перпендикулярно солнечному свету, головки цветущего подсолнуха в течение всего дня повернуты к солнцу). У некоторых животных зрительные органы не локализованы, покровы их обладают общей раздражимостью по отношению к свету. Простейший орган зрения присущ дождевому червю – отдельные светочувствительные клетки, расположенные изолированно в эпидермисе животного. Они способны различать только свет и его направление. Глаза простейших животных значительно эволюционируют, заметно усложняясь. Моллюск, стоящий еще на достаточно низкой ступени развития, имеет глаз, который напоминает глаз высших животных. Клетки нейроэпителия обращены не к свету, не к центру глаза, а от света. Возникает тип перевернутой сетчатки, что характеризует глаза высших животных. В глазу моллюска уже есть подобие линзы. Фоторецепторы скрываются в углублениях, где они защищены от яркого света, уменьшающего способность улавливать движущуюся тень. Линза выполняет функцию прозрачной защитной мембраны. Постепенно начинает совершенствоваться защитный аппарат глаза.
Глаз человека по структуре представляет собой типичный глаз позвоночных, однако имеет существенные функциональные отличия. Он развивается из разных тканевых источников.
Сетчатка и зрительный нерв формируются из эктоневральной закладки центральной нервной системы.
На 2-й неделе эмбриональной жизни, когда мозговая трубка еще не замкнута, на дорсальной поверхности медуллярной пластинки появляются два углубления – глазные ямки. На вентральной стороне им соответствует выпячивание. При замыкании мозговой трубки ямки перемещаются, принимают боковое направление. Эта стадия носит название первичного глазного пузыря.
С конца 4-й недели развития возникает хрусталик. Вначале он имеет вид утолщения покровной эктодермы в том месте, где первичный глазной пузырь начинает превращаться во вторичный. Быстро растущие задние и боковые области обрастают передние и нижние части. Однослойный первичный глазной пузырь на полой ножке превращается во вторичный пузырь, состоящий из двух слоев – глазной бокал. При образовании глазного бокала возникает зародышевая щель, которая заполняется прилежащей мезодермой. Между зачатком хрусталика и внутренней стенкой бокала формируется первичное стекловидное тело. В возрасте 6 недель зародышевая щель глаза и зрительного нерва закрывается, начинает дифференцироваться ножка глазного бокала, образуется a. hyaloidea, питающая стекловидное тело и хрусталик. Наружный листок бокала в дальнейшем превращается в пигментный слой сетчатки, из внутреннего же развивается собственно сетчатка. Края глазного бокала, прорастя впереди хрусталика, образуют радужную и ресничную части сетчатки. Ножка, или стебелек, глазного бокала удлиняется, пронизывается нервными волокнами, теряет просвет и превращается в зрительный нерв.
Из мезодермы, окружающей глазной бокал, очень рано начинает дифференцироваться сосудистая оболочка и склера. В мезенхиме, которая прорастает между эктодермой и хрусталиком, появляется щель – передняя камера. Мезенхима, лежащая перед щелью, вместе с эпителием кожи превращается в роговицу, лежащая сзади – в радужку. К этому времени начинается постепенное запустевание сосудов стекловидного тела. Сосудистая капсула хрусталика атрофируется. Внутри хрусталика образуется плотное ядро, объем хрусталика уменьшается. Стекловидное тело приобретает прозрачность. Веки развиваются из кожных складок. Они закладываются кверху и книзу от глазного бокала, растут по направлению друг к другу и спаиваются своим эпителиальным покровом. Спайка эта исчезает к 7 месяцу развития. Слезная железа возникает на 3-м месяце развития, слезный канал открывается в носовую полость на 5-м месяце.
К моменту рождения ребенка весь сложный цикл развития глаза не всегда оказывается полностью завершенным. Обратное развитие элементов зрачковой перепонки, сосудов стекловидного тела и хрусталика может происходить и в первые недели после рождения. Величайшая потребность новорожденного в совершенной и быстрой адаптации к внешним условиям, правильному развитию и росту, что в большой мере может быть обусловлено безупречным функционированием оптико-вегетативной системы, ведет к наиболее быстрому формированию, прежде всего зрительного анализатора. Рост и развитие глаза у ребенка в основном завершаются к 2-3 годам, а последующие 15-20 лет глаз изменяется меньше, чем за первые 1-2 года. Глаз новорожденного существенно отличается по размерам, массе, гистологической структуре, физиологии и функциям от глаза взрослого.
После рождения зрительный анализатор проходит определенные этапы развития, среди которых можно выделить следующие.
- Морфологическое формирование в течение первого полугодия жизни области желтого пятна и центральной ямки сетчатки. Из десяти слоев остается в основном четыре слоя; в их числе зрительные клетки, их ядра и бесструктурные пограничные мембраны.Формирование и совершенствование функциональной мобильности зрительных путей в течение первого полугодия жизни.
- Морфологическое и функциональное совершенствование зрительных клеточных элементов коры большого мозга и корковых зрительных центров в течение первых 2 лет жизни.
- Формирование и укрепление связей зрительного анализатора и его взаимосвязей с другими анализаторами в течение первых лет жизни.
- Морфологическое и функциональное развитие черепных нервов в первые (2-4) месяцы жизни.
Эмбриогенез глаза
Гестационный возраст эмбриона или плода | Длина передне-задней оси, мм | Состояние глаза |
3 нед | 1,5-4,5 | Возникновение глазных ямок и их переход в глазные пузыри. Образование эктодермальной пластинки — зачатка линзы. Появление открытой ножки глазного пузыря. |
4 нед | 4,5-7,5 | Образование глазного бокала, хрусталиковой ямки. Врастание артерии стекловидного тела в зародышевую щель глазного бокала. Дифференцирование сетчатки на два слоя вблизи заднего полюса. Образование примитивного диска зрительного нерва. |
5 нед | 7,5-12 | Образование хрусталикового пузырька — капсулы линзы, волокон и капсульного эпителия. Возникновение сосудистой сумки линзы, сосудистой сети хориодеи, примитивного нейроэпителия |
6 нед | 12-17 | Возникновение капсулозрачковой мембраны, собственных сосудов первичного стекловидного тела, мезодермального стекловидного тела, слоев ганглиозных клеток. Формирование слоев роговицы |
7 нед | 17-24 | Возникновение зачатка век. Формирование передних и задних ресничных артерий. Вхождение нервных волокон от ганглиозных клеток в канал зрительного нерва. Развитие стромы радужки. Образование слезных канальцев в виде эпителиальных тяжей |
8 нед | 24-31 | Развитие склеры. Возникновение эмбрионального ядра хрусталика. Развитие частичного перекреста нервных волокон в хиазме. Появление зрительного тракта. Формирование орбитальной части слезной железы |
9 нед | 31-40 | Срастание краев век. Исчезновение собственных сосудов стекловидного тела. Появление вторичного стекловидного тела |
10 нед | 40-49 | Возникновение палочек и колбочек в виде нитевидных отростков |
11 нед | 49-50 | Образование глиозного отростка на диске зрительного нерва. Возникновение эктодермальной части радужки, ресничного тела |
12 нед | 59-70 | Формирование зародышевого ядра хрусталика с ламбдовидными швами. Конец эмбрионального периода развития |
4 мес | 70-110 | Образование сосудистого кольца зрительного нерва (цинново сосудистое кольцо). Возникновение влагалища глазного яблока (тенонова капсула). Формирование мышцы, поднимающей верхнее веко. Появление артерий сетчатки в зоне вокруг диска зрительного нерва. |
5 мес | 110—160 | Открытие слезных путей в носовую полость |
6 мес | 160-200 | Формирование глиальных чехлов вокруг артерии стекловидного тела |
7 мес | 200-240 | Исчезновение межзрачковой мембраны и облитерация артерии стекловидного тела. Разъединение сращенных век |
8 мес | 240-250 | Развитие решетчатой пластинки зрительного нерва. Исчезновение задней сосудистой сумки линзы |
9 мес | Развитие хиазмы и зрительного нерва. Исчезновение сосудов стекловидного тела |
Глазное яблоко (bulbus oculi) по своей форме приближается к шаровидной. По данным эхобиометрии, средний переднезадний размер его равен 16,2 мм. К первому году жизни ребенка этот размер увеличивается до 19,2 мм, к 3 годам – до 20,5, к 7 – до 21,1, к 11 – до 22, к 15 – до 23 и к 20-25 годам он составляет примерно 24 мм.
Наружная фиброзная оболочка, или капсула, глаза представлена плотной и ригидной тканью 9/10 ее составляет непрозрачная часть – склера и 1/10 – прозрачная часть – роговица. Капсула по своей структуре аналогична твердой мозговой оболочке. Она выполняет защитную роль, обусловливает постоянство формы, объема и тонуса глазного яблока, является остовом для прикрепления глазодвигательных мышц; ее прободают сосуды и нервы, и в том числе зрительный нерв.
Источник