Последнее изображение на сетчатки глаза
Кто не знает мистическую легенду о том, что на сетчатке глаза мертвого человека остается изображение того, что он видел перед смертью? Эта идея волнует умы общественности уже более века.
Например, эта легенда эта нашла отражение в сюжете романа Жюля Верна «Братья Кип» (1902). Описанный в романе случай, связанный с использованием сетчатки глаза умершего человека, Жюль Верн почерпнул из современных ему изданий и энциклопедий по офтальмологии. При этом были допущены некоторые ошибки – в частности, работать с сетчаткой нужно немедленно после смерти человека, а не на следующий день – как в романе. Однако сам научный факт — столь необычный! – внук писателя Жан Жюль-Верн в своем большом труде о французском классике называет соответствующим действительности.
Какова же научная подоплека сего странного явления, являющегося смесью веры в технический прогресс и спиритизм одновременно?
В 1876 г. руководителю кафедры физиологии в Гейделберге Вилли Кюне удалось получить первое устойчивое изображение внешних предметов на сетчатке глаза кролика. Сохранение изображений на сетчатке глаза Кюне назвал оптографией, а полученное изображение – оптограммой.
Получение оптограмм по методу Кюне происходило следующим образом: голова и глазное яблоко кролика, зафиксированные в полутора метрах от квадратного отверстия ставни (сторона квадрата = 30 см), закрывались на 5 минут черным сукном, а затем в течение 2 минут подвергались действию облачного южного неба. При свете натрия глазное яблоко кролика извлекалось и вскрывалось, а затем помещалось в пятипроцентный раствор квасцов. На другой день можно было наблюдать картину следующую: на красно-розовом фоне сетчатки глаза проявляется отчетливо выраженный слегка розовый квадратный образ ставни. Во втором глазном яблоке, извлеченном две минуты спустя после смерти кролика и таким же образом обработанном, образ ставни отображается белым, т. е. без розовой окраски, величиною 1 мм. Однако при дневном свете этот образ очень быстро исчезает.
В 1882 г. Кюне от опытов на животных попытался перейти к изготовлению оптограммы человека. Исследованию были подвергнуты глаза преступника через 10 минут после его казни. Ожидали, что на сетчатке его глаз могли отобразиться сильные световые впечатления, предшествовавшие моменту казни. Однако, на оптограмме довольно ясно виднелось лишь светлое пятно, являющееся, в интерпретации Кюне, отображением диска солнца, на которое смотрел осужденный перед тем, как ему были завязаны глаза. По другим источникам, Кюне получил нечёткое изображение лестницы, по которой осуждённый всходил на эшафот.
Позднее, в переписке с нашим соотечественником доктором Талько, возникшей по поводу сомнительных опытов с криминальной оптографией в России, Куне заметил: «Так как Sehpurpur (зрительный пурпур, устаревшее название родопсина, участвующего в восприятии зрительного образа – прим. second_doctor ) в значительной степени бледнеет на свету, то для моментальных фотографических снимков она не годится. Кроме того, глаз, с одной стороны, не может долго фиксировать, а с другой – объекты перед ним постоянно меняются, так что нельзя ожидать, чтобы в глазу сохранился ясно хотя один предмет, следовательно, на сетчатке ничего нельзя будет разобрать. После первых работ об оптографии дальнейших до сих пор не появилось».
В 1924-25 гг. немецкий профессор Г.Пооп не подвел итог этим исследованиям. Он считал, что фиксация изображения предметов на глазах конечно же происходит, но выявить ее невозможно, так как она сохраняется лишь на одну треть секунды, после чего исчезает, так как разложенный световыми лучами зрительный пурпур вновь восстанавливается. Внезапная смерть приостанавливает процесс восстановления, поэтому у некоторых убитых животных, сетчатка которых богаче зрительным пурпуром, нежели сетчатка человеческого глаза, удавалось обнаружить изображения ярких предметов, виденных животными перед смертью. Но Пооп подчеркивал, что ни одного достоверного случая с сетчаткой человека не получено.
Подводя итог столетнему хождению легенды об оптографии, можно с полной уверенностью констатировать, что хотя фотографирование с помощью родопсина в принципе и возможно, но у него нет будущего в области практики. Во-первых, возможно фиксирование сетчатки только очень ярких и контрастных изображений (типа решетки Кюне), но никак не фотографических портретов. А, во-вторых, даже для получения и таких примитивных изображений необходима немедленная после наступления смерти фиксация сетчатки в химических реактивах.
В любом случае, сейчас про новые исследования этого явления неизвестно, теоретически оно может носить сугубо научный интерес (исследование химии зрения и проч.), но нет заинтересованных в её утилитарном применении (криминалистика), а раз нет спроса, то нет и предложения.
Источник
Intel показала журналистам The Verge умные очки Vaunt. В отличие от других подобных гаджетов, эта модель выглядит как обычные очки. Маломощный лазер используется для направления проекции на стекло, откуда она отражается и попадает на сетчатку глаза.
Как и Google Glass пять лет назад, Vaunt сперва раздадут разработчикам. Google хотела с помощью очков переосмыслить использование человеком гаджетов. У Intel другая цель — сделать гаджет, максимально адаптированный для обычной жизни.
Умные очки чаще всего отличаются необычным, футуристичным дизайном и отсутствием коммерческого успеха. Magic Leap похож на очки главного героя фильмов «Хроники Риддика». Hololens — это скорее не очки, а компьютер с Windows на голове. Google Glass привели к появлению слова glasshole (glass — «очки», asshole — ругательное слово). Пользователи подобных устройств выглядят необычно. Другим людям может не понравиться, что на них постоянно направлен объектив камеры. В крайнем случае это может привести к драке.
Журналист The Verge рассказал о впечатления от новых очков Intel. Подразделение компании New Devices Group постаралась сделать очки, в которых человек не казался бы нёрдом из 1970-х. Продавать устройство Intel планирует в том числе в магазинах оптики: разработчики хотят выйти на рынок очков на коррекции зрения, так как такие очки ноят 2,5 миллиарда человек в мире. В Intel считают, что люди будут покупать Vaunt, как раньше — обычные очки.
На фото слева — Стив Манн (Steve Mann), который ещё в школе сделал рюкзак-компьютер на базе процессора 6502 для управления фотоаппаратурой, а на шлеме закрепил ЭЛТ видоискателя фотоаппарата с возможностью отображения 40 строчек текста. Справа на фото — Тад Старнер (Thad Starner), будущий глава разработки Google Glass.
Умные очки Vaunt отображают простые сообщения вроде направления, уведомлений о сообщениях, адресов и информации о ресторанах и достопримечательностях. Они работают с Android и iOS смартфонами по Bluetooth. Простоту этого устройства можно сравнить с часами Pebble — тем более, что Итай Воншак (Itai Vonshak) возглавлял разработку продуктов и элементов пользовательского интерфейса в Pebble, а сейчас является руководителем продуктов в подразделении Intel New Devices Group.
На правой дужке очков размещён лазер VCSEL — «Поверхностно-излучающий лазер с вертикальным резонатором». Он отправляет монохромную картинку разрешением около 400х150 точек на голографический отражатель правой линзы очков. Затем картинка отражается на сетчатку глаза пользователя. Благодаря этому изображение всегда находится в фокусе. Очки нужно подогнать под пользователя: измерить межзрачковое расстояние и настроить софт. Можно использовать как обычные стёкла, так и линзы для коррекции зрения. Когда пользователь не смотрит в направлении дисплея, он не замечает его. В гаджете нет вибрации или звуковых сигналов — достаточно того, что периферическое зрение быстро реагирует на любое движение и изменение картинки.
На вопрос о безопасности направленного на сетчатку лазера разработчики отвечают, что он не представляет никакой угрозы. Этот лазер очень малой мощности относится к Классу 1 безопасности.
Другие компоненты Vaunt — процессор, акселерометр и компас. Устройство распознаёт жесты головы и знает, в какую сторону вы смотрите. В прототипах нет микрофона, но в будущем он может быть добавлен для возможности общаться с голосовым ассистентом Alexa. Что по поводу батареи — она должна работать около 18 часов. После этого умные очки превращаются в обычные, но их можно продолжать носить.
Важной целью было достижение удобного веса гаджета — не более 50 граммов. Аккумуляторы и электронику разместили в дужках таким образом, чтобы на уши или нос устройство оказывало минимальное давление. Vaunt не просто должны выглядеть, как обычные очки, но и казаться таковыми самому пользователю. Электронику разместили близко к линзам, чтобы дужки могли немного сгибаться, как в случае с обычными очками. В других устройствах, как отмечают разработчики, батарея может занимать всю дужку, так что эта часть очков не деформируется, чтобы удобно прилегать к голове.
Intel планирует раздать разработчикам прототипы очков позже в течение 2018 года. Все компоненты устройства пока делаются самим подразделением или заказываются, о серийном производстве информации нет. Также неясно, насколько широкими будут возможности гаджета — программное обеспечение для него ещё в разработке. Представители подразделения рассказали о возможных сценариях использования Vaun вроде вывода информации о ресторане на основе данных о геолокации со смартфона и направлении головы пользователя. Сроки коммерческой доступности пока не объявили.
Источник
Глаза нам врут.
На самом деле глаза человека — орган весьма «несовершенный». Если сравнивать зрительную систему с фотоаппаратам, то стоит сразу сказать, что они непохожи от слова «совсем» (хотя казалось бы). Дело в том, что мозг человека активно «вмешивается» в процесс сбора зрительной информации и корректирует ее восприятие, в первую очередь – цвета, формы и даже восприятие времени. Вот несколько таких интересных парадоксов.
1. Вверх ногами
Примерно вот так.
Наукой давно доказано, что глаз преломляет световые лучи так, что в его сетчатке изображение получается уменьшенным и перевернутым. То, что земля у нас внизу, а небо вверху – заслуга именно мозга. Еще в XIX веке врачи доказали, что если человеку постоянно показывать перевернутое изображение, то мозг за несколько дней приспособится к этому.
2. Слепое пятно – слепое
Проверяем сами.
Слепое пятно – область на сетчатке глаза, которая не чувствует свет. Несмотря на этот факт, картинка для нас всегда цельная. Это также заслуга мозга, который «достраивает» изображение на основании уже поступившей информации.
Для того, чтобы увидеть слепое пятно, нужно закрыть правый глаз, а левым посмотреть на правый крест, обведенный на картинке кружком. Монитор и лицо при этом следует держать вертикально. Теперь, не сводя взгляда с креста нужно начать подвигать и отодвигать от монитора лицо. Параллельно с этим нужно следить за левыми крестом. Спустя некоторое время он исчезнет.
3. Отказываюсь смотреть
Иногда не видно ничего.
Саккады – это «прыжки» зрения, которые глаз совершает во время рассматривания картин, езды на автомобиле, рассматривания зеркала и совершения других подобных действий. Каждый глаз совершает 2-3 «прыжка» в секунду. В моменты переведения взгляда из одной точки в другу, глаза не видят ничего. Зрение просто отключается мозгом.
4. Вперед в будущее
Попробуйте сами с часами.
Хроностазис – другое интересное явление, связанное с уже упомянутыми саккадами. Суть явления заключается в том, что наше восприятие растягивает моменты, когда человеку приходится смотреть на что-то новое.
Проще всего проверить это явление можно так. Долго смотрим на что-то, а потом переводим взгляд на часы со стрелками. Первое движение секундной стрелки покажется дольше остальных. Это и есть хроностазис.
5. Долой ненужное
Глаза умеют удалять ненужное.
Эффектом Трокслера – это интереснейшая особенность периферического зрения. Из-за присутствия в сетчатке глаза капилляров, наш мозг прячет от восприятия неподвижные объекты. Делается это для того, чтобы они не накладывались на те самые капилляры.
6. Человек не видит настоящих цветов
Популярная иллюзия.
Пожалуй, самая известная особенность нашего восприятия. Все дело в том, что мозг достраивает картинку исходя из полного спектра цветов и окружающей обстановки. Именно поэтому, квадрат «А» всегда будет темнее квадрата «Б», несмотря на то, что они выкрашены в один цвет. Тоже самое касается иллюзии с «шахматной» доской. Обозначенные на ней квадраты на самом деле одного цвета.
7. Периферическое зрение слабее, чем кажется
Боковое зрение очень слабо.
Колбы и палочки в сетчатке глаза расположены не равномерно. Клетки, которые ощущают цвета, по большей части собраны строго в центре. Именно по этой причине у периферического зрения такое плохое разрешение.
Хочется больше всякого интересного? Как насчет того, чтобы посмотреть на вот эти 7 вещей из СССР, которые внезапно стали модными трендами в наше время к удивлению всех.
Понравилась статья? Тогда поддержи нас, жми:
Источник
Перед глазами вспышки, искры и молнии? Взор застилает пелена?
Срочно к офтальмологу!Искры, пелена и прочие странные спецэффекты, внезапно появившиеся в поле зрения, могут свидетельствовать об отслойке сетчатки, то есть о состоянии, угрожающем появлением серьезных проблем. Если подозрения подтвердятся, промедление с обращением за квалифицированной помощью может закончиться необратимой слепотой.
Отслойка сетчатки – что это такое?
Отслойка сетчатки — отделение слоя фоторецепторных клеток — палочек и колбочек — от наружного слоя.
Можно сравнить сетчатку с тончайшей вуалью, выстилающей глаз изнутри и плотно прилегающей к его сосудистой оболочке. Или с кинопленкой, на которой фиксируется изображение, – для того, чтобы затем быть отправленным на расшифровку в специальные отделы мозга, отвечающие за зрение. При отслойке сетчатка утрачивает анатомическую связь с питающей ее сосудистой оболочкой глаза, этот патологический процесс может растянуться на годы – или распространиться с ураганной скоростью.
Тревожными симптомами могут стать уже упомянутые искры в глазах – молнии, вспышки. Появление плавающих черных пятнышек и пелены, мешающей обзору, утрата бокового зрения… Хотя некоторые виды отслоений на начальных стадиях могут протекать практически бессимптомно, становясь очевидными лишь после того, как будет задета центральная, наиболее важная часть сетчатки, – макула.
Кто находится в группе риска?
Основная группа риска – люди, страдающие близорукостью средней или высокой степени, заболеванием, при котором из-за патологического роста глазного яблока сетчатка растягивается, истончается и становится очень и очень уязвимой. Также к этой группе можно причислить тех, кто имеет диагноз «сахарный диабет», страдающих нарушениями кровообращения, перенесших травмы глаз, головы и хирургические вмешательства на органах зрения.
Однако внимательно относиться к своей сетчатке стоит и людям, отличающимся, казалось бы, завидным здоровьем вообще и хорошим состоянием зрительной системы в частности. Например, спортсменам – борцам, прыгунам с трамплина и т.д., а также представителям различных экстремальных профессий. Дело в том, что причинами отслоений сетчатки могут стать чрезмерные физические нагрузки или сильные сотрясения тела при прыжках и падениях, поэтому регулярные проверки зрения актуальны даже для суперменов.
Чем помогут врачи?
В качестве лечения могут быть предложены:
- Витрэктомия – операция, в ходе которой выполняется частичное или полное удаление стекловидного тела глаза с целью получения доступа к пораженным тканям сетчатки. Стекловидное тело замещается специальным веществом, которое впоследствии заменяется естественной внутриглазной жидкостью, – анатомия глаза после витрэктомии восстанавливается.
- Эписклеральное пломбирование – процедура, в ходе которой на склеру, наружную белковую оболочку глаза, накладываются фиксирующие пломбы, обеспечивающие плотное прилегание сетчатки к сосудистой оболочке.
- Лазерная коагуляция – процедура, заключающаяся в создании сращений между сетчатой и сосудистой оболочками глаза. Является отличной мерой предупреждения отслоения сетчатки, – при помощи лазерного луча врач бесконтактно и бескровно укрепляет все нуждающиеся во внимании участки.
Итоговое качество зрения напрямую зависит от размера и локализации зоны поражения сетчатки: наиболее опасны отслойки макулы, ответственной за центральное зрение. И, конечно, огромную роль играет своевременное начало лечения, – важно регулярно проходить офтальмологические обследования, а в случае появления тревожных симптомов со стороны зрения обратиться к специалистам максимально оперативно.
Полезная информация:
— Лазерная коагуляция сетчатки – ППЛК
— Витрэктомия
— Лечение заболеваний сетчатки
_____________________________
Понравилась статья? Тогда ставьте лайк ???? и подписывайтесь на наш канал. Это поможет нам понять, что вам действительно интересно, – чтобы рассказать об этом более подробно
Источник
Глаз человека – удивительный орган. Он способен превращать электромагнитное излучение (свет) в картинку. Мы видим окружающий мир благодаря многоступенчатого процессу, протекающему в глазах и в мозге.
Оптическая система глаза — как устроена
Человеческий глаз устроен настолько сложно, что различает миллион цветовых оттенков, определяет величину предмета и расстояние до него, меняет фокус при взгляде на дальние и ближние объекты, регулирует объем поступающего света. Ювелирная работа глаз обеспечивается их сложным строением.
Глаз подобен айсбергу. На виду остаются только передняя зона, покрытая роговицей – прочной оболочкой, не имеющей кровеносных сосудов. Под ней расположена передняя камера, в центре которой находится радужка со зрачком в центре. За зрачком располагается хрусталик. За ним лежит объемное стекловидное тело, составляющее большую часть глаза. Оно состоит из гелеобразного вещества, служит для поддержания формы глазного яблока и проведения световых лучей.
На задней поверхности глаза, за стекловидным телом, находится сетчатка – светочувствительный слой клеток, воспринимающий картинку. К ней подходит зрительный нерв, соединяющийся с головным мозгом. Нерв передает импульсы в центральную нервную систему.
Так выглядит оптическая система глаза в упрощенном виде.
Работа глаз
Световой луч падает на какой-либо предмет в окружающем мире и отражается от него, попадая на роговицу, а затем в зрачок. Тот, расширяясь или сужаясь, регулирует поток света, отсеивая лишние лучи. Благодаря работе зрачка человек может видеть как на ярком свету, так и в темноте.
Через зрачок луч попадает на хрусталик – двояковыпуклую линзу. Задача этого органа – преломить луч и направить его на сетчатку. Благодаря хрусталику человеческий глаз способен к аккомодации. Так называется изменение кривизны лучей для обеспечения видимости на дальних и ближних расстояниях. Аккомодация позволяет видеть звезды на ночном небе и мелкие пылинки вблизи.
Пройдя через хрусталик и изменив траекторию, световой луч достигает сетчатки – самой сложной глазной структуры. Она состоит из клеток-фоторецепторов, способных принимать фотоны. На ней формируется изображение, но оно меньше настоящего и перевернуто вверх ногами.
Фоторецепторы превращают световые лучи в электрические импульсы, которые по волокнам зрительного нерва передаются на кору полушарий головного мозга. При этом каждый глаз воспринимает собственную картинку, а мозг накладывает их друг на друга и превращает в одну.
Почему изображение отпечатывается на сетчатке перевернутым
Ответ на этот вопрос можно получить, если вспомнить школьный курс физики, раздел «Оптика». Согласно законам этой науки любой световой луч, проходящий через криволинейную поверхность, преломляется, и при этом изображение с обратной стороны становится перевернутым.
В глазах сразу две криволинейные поверхности: роговица и хрусталик. Поэтому преломление происходит целых три раза:
- первое – при переходе света через роговицу (картинка переворачивается);
- второе – при прохождении через переднюю поверхность хрусталика (картинка становится нормальной);
- третье – при прохождении через заднюю выпуклую часть хрусталика (изображение снова переворачивается и поступает в таком виде на сетчатку).
Тройное переворачивание – не необходимость, а просто следствие естественных физических законов. Световой луч не может пройти через линзу, не изменив траекторию, и не сформировав перевернутую картинку.
Удивительно, насколько тонко работает наш мозг. Он приспособился возвращать изображению нормальность. Иначе мы бы видели небо внизу, а землю наверху.
Процессы преломления и восприятия происходят мгновенно. Были проведены эксперименты, показавшие, что от попадания луча на роговицу до восприятия правильного изображения мозгом проходит 13 миллисекунд. Глазные яблоки делают 3 движения в секунду, смотря на разные объекты. Мозг должен успевать за ними: трансформировать картинку в правильную, делать выводы и отдавать команду, куда смотреть дальше.
Таким образом, мы видим все в перевернутом виде, и лишь сложная работа мозга позволяет привести поступающую от глаза картинку в соответствие с реальностью.
Теперь вы можете представить, насколько тонкий зрительный прибор находится у нас в организме. За его здоровьем необходимо следить, иначе он, как и любой прибор, может прийти в негодность. Помочь привести в порядок ваш зрительный аппарат способны врачи клиники Клин Вью. Здесь к вашим услугам самая современная техника и грамотные специалисты! Обращайтесь!
Источник