Последнее изображение на сетчатке
Кто не знает мистическую легенду о том, что на сетчатке глаза мертвого человека остается изображение того, что он видел перед смертью? Эта идея волнует умы общественности уже более века.
Например, эта легенда эта нашла отражение в сюжете романа Жюля Верна «Братья Кип» (1902). Описанный в романе случай, связанный с использованием сетчатки глаза умершего человека, Жюль Верн почерпнул из современных ему изданий и энциклопедий по офтальмологии. При этом были допущены некоторые ошибки – в частности, работать с сетчаткой нужно немедленно после смерти человека, а не на следующий день – как в романе. Однако сам научный факт — столь необычный! – внук писателя Жан Жюль-Верн в своем большом труде о французском классике называет соответствующим действительности.
Какова же научная подоплека сего странного явления, являющегося смесью веры в технический прогресс и спиритизм одновременно?
В 1876 г. руководителю кафедры физиологии в Гейделберге Вилли Кюне удалось получить первое устойчивое изображение внешних предметов на сетчатке глаза кролика. Сохранение изображений на сетчатке глаза Кюне назвал оптографией, а полученное изображение – оптограммой.
Получение оптограмм по методу Кюне происходило следующим образом: голова и глазное яблоко кролика, зафиксированные в полутора метрах от квадратного отверстия ставни (сторона квадрата = 30 см), закрывались на 5 минут черным сукном, а затем в течение 2 минут подвергались действию облачного южного неба. При свете натрия глазное яблоко кролика извлекалось и вскрывалось, а затем помещалось в пятипроцентный раствор квасцов. На другой день можно было наблюдать картину следующую: на красно-розовом фоне сетчатки глаза проявляется отчетливо выраженный слегка розовый квадратный образ ставни. Во втором глазном яблоке, извлеченном две минуты спустя после смерти кролика и таким же образом обработанном, образ ставни отображается белым, т. е. без розовой окраски, величиною 1 мм. Однако при дневном свете этот образ очень быстро исчезает.
В 1882 г. Кюне от опытов на животных попытался перейти к изготовлению оптограммы человека. Исследованию были подвергнуты глаза преступника через 10 минут после его казни. Ожидали, что на сетчатке его глаз могли отобразиться сильные световые впечатления, предшествовавшие моменту казни. Однако, на оптограмме довольно ясно виднелось лишь светлое пятно, являющееся, в интерпретации Кюне, отображением диска солнца, на которое смотрел осужденный перед тем, как ему были завязаны глаза. По другим источникам, Кюне получил нечёткое изображение лестницы, по которой осуждённый всходил на эшафот.
Позднее, в переписке с нашим соотечественником доктором Талько, возникшей по поводу сомнительных опытов с криминальной оптографией в России, Куне заметил: «Так как Sehpurpur (зрительный пурпур, устаревшее название родопсина, участвующего в восприятии зрительного образа – прим. second_doctor ) в значительной степени бледнеет на свету, то для моментальных фотографических снимков она не годится. Кроме того, глаз, с одной стороны, не может долго фиксировать, а с другой – объекты перед ним постоянно меняются, так что нельзя ожидать, чтобы в глазу сохранился ясно хотя один предмет, следовательно, на сетчатке ничего нельзя будет разобрать. После первых работ об оптографии дальнейших до сих пор не появилось».
В 1924-25 гг. немецкий профессор Г.Пооп не подвел итог этим исследованиям. Он считал, что фиксация изображения предметов на глазах конечно же происходит, но выявить ее невозможно, так как она сохраняется лишь на одну треть секунды, после чего исчезает, так как разложенный световыми лучами зрительный пурпур вновь восстанавливается. Внезапная смерть приостанавливает процесс восстановления, поэтому у некоторых убитых животных, сетчатка которых богаче зрительным пурпуром, нежели сетчатка человеческого глаза, удавалось обнаружить изображения ярких предметов, виденных животными перед смертью. Но Пооп подчеркивал, что ни одного достоверного случая с сетчаткой человека не получено.
Подводя итог столетнему хождению легенды об оптографии, можно с полной уверенностью констатировать, что хотя фотографирование с помощью родопсина в принципе и возможно, но у него нет будущего в области практики. Во-первых, возможно фиксирование сетчатки только очень ярких и контрастных изображений (типа решетки Кюне), но никак не фотографических портретов. А, во-вторых, даже для получения и таких примитивных изображений необходима немедленная после наступления смерти фиксация сетчатки в химических реактивах.
В любом случае, сейчас про новые исследования этого явления неизвестно, теоретически оно может носить сугубо научный интерес (исследование химии зрения и проч.), но нет заинтересованных в её утилитарном применении (криминалистика), а раз нет спроса, то нет и предложения.
Источник
Глаз человека – удивительный орган. Он способен превращать электромагнитное излучение (свет) в картинку. Мы видим окружающий мир благодаря многоступенчатого процессу, протекающему в глазах и в мозге.
Оптическая система глаза — как устроена
Человеческий глаз устроен настолько сложно, что различает миллион цветовых оттенков, определяет величину предмета и расстояние до него, меняет фокус при взгляде на дальние и ближние объекты, регулирует объем поступающего света. Ювелирная работа глаз обеспечивается их сложным строением.
Глаз подобен айсбергу. На виду остаются только передняя зона, покрытая роговицей – прочной оболочкой, не имеющей кровеносных сосудов. Под ней расположена передняя камера, в центре которой находится радужка со зрачком в центре. За зрачком располагается хрусталик. За ним лежит объемное стекловидное тело, составляющее большую часть глаза. Оно состоит из гелеобразного вещества, служит для поддержания формы глазного яблока и проведения световых лучей.
На задней поверхности глаза, за стекловидным телом, находится сетчатка – светочувствительный слой клеток, воспринимающий картинку. К ней подходит зрительный нерв, соединяющийся с головным мозгом. Нерв передает импульсы в центральную нервную систему.
Так выглядит оптическая система глаза в упрощенном виде.
Работа глаз
Световой луч падает на какой-либо предмет в окружающем мире и отражается от него, попадая на роговицу, а затем в зрачок. Тот, расширяясь или сужаясь, регулирует поток света, отсеивая лишние лучи. Благодаря работе зрачка человек может видеть как на ярком свету, так и в темноте.
Через зрачок луч попадает на хрусталик – двояковыпуклую линзу. Задача этого органа – преломить луч и направить его на сетчатку. Благодаря хрусталику человеческий глаз способен к аккомодации. Так называется изменение кривизны лучей для обеспечения видимости на дальних и ближних расстояниях. Аккомодация позволяет видеть звезды на ночном небе и мелкие пылинки вблизи.
Пройдя через хрусталик и изменив траекторию, световой луч достигает сетчатки – самой сложной глазной структуры. Она состоит из клеток-фоторецепторов, способных принимать фотоны. На ней формируется изображение, но оно меньше настоящего и перевернуто вверх ногами.
Фоторецепторы превращают световые лучи в электрические импульсы, которые по волокнам зрительного нерва передаются на кору полушарий головного мозга. При этом каждый глаз воспринимает собственную картинку, а мозг накладывает их друг на друга и превращает в одну.
Почему изображение отпечатывается на сетчатке перевернутым
Ответ на этот вопрос можно получить, если вспомнить школьный курс физики, раздел «Оптика». Согласно законам этой науки любой световой луч, проходящий через криволинейную поверхность, преломляется, и при этом изображение с обратной стороны становится перевернутым.
В глазах сразу две криволинейные поверхности: роговица и хрусталик. Поэтому преломление происходит целых три раза:
- первое – при переходе света через роговицу (картинка переворачивается);
- второе – при прохождении через переднюю поверхность хрусталика (картинка становится нормальной);
- третье – при прохождении через заднюю выпуклую часть хрусталика (изображение снова переворачивается и поступает в таком виде на сетчатку).
Тройное переворачивание – не необходимость, а просто следствие естественных физических законов. Световой луч не может пройти через линзу, не изменив траекторию, и не сформировав перевернутую картинку.
Удивительно, насколько тонко работает наш мозг. Он приспособился возвращать изображению нормальность. Иначе мы бы видели небо внизу, а землю наверху.
Процессы преломления и восприятия происходят мгновенно. Были проведены эксперименты, показавшие, что от попадания луча на роговицу до восприятия правильного изображения мозгом проходит 13 миллисекунд. Глазные яблоки делают 3 движения в секунду, смотря на разные объекты. Мозг должен успевать за ними: трансформировать картинку в правильную, делать выводы и отдавать команду, куда смотреть дальше.
Таким образом, мы видим все в перевернутом виде, и лишь сложная работа мозга позволяет привести поступающую от глаза картинку в соответствие с реальностью.
Теперь вы можете представить, насколько тонкий зрительный прибор находится у нас в организме. За его здоровьем необходимо следить, иначе он, как и любой прибор, может прийти в негодность. Помочь привести в порядок ваш зрительный аппарат способны врачи клиники Клин Вью. Здесь к вашим услугам самая современная техника и грамотные специалисты! Обращайтесь!
Источник
Глаз – тело в виде шаровидной сферы. Он достигает диаметра 25 мм и веса 8 г, является зрительным анализатором. Фиксирует увиденное и передает изображение на сетчатку, затем по нервным импульсам в мозг.
Прибор оптической зрительной системы – человеческий глаз умеет сам настраиваться, в зависимости от поступающего света. Он способен увидеть удаленные предметы и находящиеся близко.
Строение сетчатки
Сетчатка имеет очень сложное строение
Глазное яблоко представляет собой три оболочки. Внешняя – непрозрачная соединительная ткань, которая поддерживает форму глаза. Вторая оболочка – сосудистая, содержит большую сеть сосудов, которая питает глазное яблоко.
По цвету она черная, поглощает свет, не давая ему рассеиваться. Третья оболочка – радужная, цветная, от ее расцветки зависит цвет глаз. В центре имеется зрачок, который регулирует поток лучей и меняется в диаметре, зависит от интенсивности освещения.
Оптическая система глаза состоит из роговицы, хрусталика, стекловидного тела. Хрусталик может принимать размеры маленького шарика и растягиваться до больших размеров, меняя фокус расстояния. Он способен менять свою кривизну.
Глазное дно покрывает сетчатка, имеющая толщину до 0,2 мм. Она состоит из слоистой нервной системы. Сетчатка имеет большую зрительную часть – фоторецепторные клетки и слепую переднюю часть.
Зрительные рецепторы сетчатки – палочки и колбочки. Эта часть состоит из десяти слоев, и поддается рассмотрению только под микроскопом.
Как формируется изображение на сетчатке
Проекция изображения на сетчатку
Когда лучи света проходят хрусталик, перемещаясь через стекловидное тело, они попадают на сетчатку, находящуюся на плоскости глазного дна. Напротив зрачка на сетчатке есть желтое пятно – это центральная часть, изображение на нем самое четкое.
Остальная часть – это периферическая. Центральная часть позволяет четко рассматривать предметы до мельчайших деталей. С помощью периферического зрения человек способен видеть не очень четкую картинку, но ориентироваться в пространстве.
Восприятие картинки происходит с проекцией изображения на сетчатку глаза. Фоторецепторы возбуждаются. Эта информация посылается в мозг и обрабатывается в зрительных центрах. Сетчатка каждого глаза передает через нервные импульсы свою половину изображения.
Благодаря этому и зрительной памяти возникает общий зрительный образ. На сетчатке отображается картинка в уменьшенном виде, перевернутой. А перед глазами она видится прямая и в натуральных размерах.
Снижение зрения при повреждениях сетчатки
Повреждение сетчатки ведет к снижению зрения. Если повреждена центральная ее часть, то может привести к полной потере зрения. О нарушениях периферического зрения человек долгое время может не догадываться.
Повреждение выявляется при проверке именно периферического зрения. При поражении большого участка этой части сетчатки происходит:
- дефект зрения в виде выпадения отдельных фрагментов;
- снижение ориентации при плохой освещенности;
- изменение восприятия цветов.
Изображение предметов на сетчатке глаза, контроль изображения мозгом
Коррекция зрения с помощью лазера
Если световой поток фокусируется перед сетчаткой, а не в центре, то это дефект зрения называется близорукостью. Близорукий человек плохо видит вдаль и хорошо видит вблизи. Когда световые лучи фокусируются за сетчаткой, то это называется дальнозоркостью.
Человек, наоборот, плохо видит близко и хорошо различает предметы вдали. Спустя некоторое время, если глаз не видит изображения предмета, оно исчезает с сетчатки. Образ, запомнившийся зрительно, хранится в сознании человека, на протяжении 0,1 сек. Это свойство называется инерцией зрения.
Как изображение контролируется мозгом
Еще ученый Иоганн Кеплер понял, что проектируемое изображение перевернутое. А другой ученый – француз Рене Декарт провел опыт и подтвердил этот вывод. Он с бычьего глаза убрал задний непрозрачный слой.
Вставил глаз в отверстие в стекле и увидел на стенке глазного дна картинку за окном в перевернутом виде. Таким образом, утверждение, что все изображения, подающие на сетчатку глаза, имеют перевернутый вид, было доказано.
А то, что мы видим изображения неперевернутыми, является заслугой мозга. Именно мозг корректирует непрерывно зрительный процесс. Это тоже доказано научным и опытным путем. Психолог Дж. Стреттон в 1896 году решил поставить эксперимент.
Он использовал очки, благодаря которым, на сетчатке глаза все предметы имели прямой вид, а не перевернутый. Тогда, как сам Стреттон видел перед собой перевернутые картинки. У него началось несогласованность явлений: видение глазами и ощущение других чувств. Появились признаки морской болезни, его тошнило, чувствовался дискомфорт и дисбаланс в организме. Продолжалось это три дня.
На четвертый день ему стало лучше. На пятый – он чувствовал себя прекрасно, как и до начала эксперимента. То есть мозг приспособился к изменениям и привел все в норму через некоторое время.
Стоило ему снять очки, как все опять встало с ног на голову. Но в этом случае мозг быстрее справился с задачей, уже через полтора часа все восстановилось, и картинка стала нормальной. Такой же опыт проводили с обезьяной, но она не выдержала эксперимента, впала как бы в коматозное состояние.
Особенности зрения
Палочки и колбочки
Еще одна особенность зрения – аккомодация, это способность глаз приспосабливаться видеть как на близком расстоянии, так и на далеком. На хрусталике имеются мышцы, которые могут изменять кривизну поверхности.
При взгляде на предметы, расположенные на дальнем расстоянии, кривизна поверхности небольшая и мышцы расслаблены. При рассмотрении предметов на близком расстоянии, мышцы приводят хрусталик в сжатое состояние, кривизна увеличивается, следовательно, и оптическая сила тоже.
Но на очень близком расстоянии, напряжение мышц становится наивысшим, хрусталик может деформироваться, глаза быстро утомляются. Поэтому предельное расстояние для чтения и выполнения письма составляет 25 см до предмета.
На сетчатках левого и правого глаза получаемые изображения отличаются друг от друга, потому, что каждый глаз в отдельности видит предмет со своей стороны. Чем ближе рассматриваемый предмет, тем различия ярче.
Глаза видят предметы объемно, а не в плоскости. Эта особенность называется стереоскопическим зрением. Если долго рассматривать какой-то рисунок или предмет, то переместив глаза на чистое пространство, можно увидеть очертание на мгновение этого предмета или рисунка.
Факты о зрение
Есть очень много интересных фактов о строении глаза
Интересные факты о зрении человека и животных:
- Зеленые глаза имеют только 2% населения земного шара.
- Разные глаза по цвету бывают у 1% всего населения.
- Красные глаза бывают у альбиносов.
- Угол обзора у человека от 160 до 210°.
- У кошек глаза поворачиваются до 185°.
- У лошади обзор глаз составляет 350°.
- Гриф видит мелких грызунов с высоты 5 км.
- Стрекоза имеет уникальный зрительный орган, который состоит из 30 тыс. отдельных глазков. Каждый глазок видит отдельный фрагмент, и мозг соединяет все в большую картинку. Такое зрение называется фасеточным. Стрекоза видит в секунду 300 изображений.
- У страуса объем глаза больше, чем объем мозга.
- Глаз крупного кита весит 1 кг.
- Крокодилы, когда едят мясо плачут, освобождаясь от излишней соли.
- Есть среди скорпионов виды, имеющие до 12 глаз, у некоторых пауков насчитывается 8 глаз.
- Красный цвет не различают собаки, кошки.
- Пчела тоже не видит красного цвета, но различает другие, хорошо чувствует ультрафиолетовое излучение.
- Распространенное мнение, что коровы и быки реагируют на красный цвет – ошибочное. На корридах быки обращают внимание не на красный цвет, а на движение тряпки, так как они еще близорукие.
Глазной орган сложный по структуре и функциональности. Каждая составная его часть индивидуальна и неповторима, в том числе и сетчатка. От работы каждого отдела отдельно и вместе взятых, зависит правильное и четкое восприятие изображения, острота зрения и видение мира в цветах и красках.
Про близорукость и методах ее лечения — в видеосюжете:
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
Источник
Глаз – орган, отвечающий за зрительное восприятие окружающего мира. Он состоит из глазного яблока, которое при помощи зрительного нерва соединено с определенными мозговыми участками, и вспомогательных аппаратов. К таким аппаратам можно отнести слезные железы, мышечные ткани и веки.
Особенность строения
Глазное яблоко покрыто специальной защитной оболочкой, которая защищает его от различных повреждений, склерой. Внешняя часть такого покрытия имеет прозрачную форму и называется роговицей. Роговидная область, одна из самых чувствительных частей человеческого организма. Даже небольшое воздействие на эту область приводит к тому, что происходит закрытие глаз веками.
Под роговицей находится радужная оболочка, цвет которой может различаться. Между этими двумя слоями расположена специальная жидкость. В строении радужки есть специальное отверстие для зрачка. Его диаметр имеет свойство расширяться и сужаться в зависимости от поступающего количества света. Под зрачком находится оптическая линза, хрусталик, напоминающая своеобразное желе. Его крепление к склере осуществляется при помощи специальных мышц. За оптической линзой глазного яблока расположена область, получившая название — стекловидное тело. Внутри глазного яблока расположен слой, имеющий название, глазное дно. Данный участок покрыт сетчатой оболочкой. Данный слой имеет в своем составе тонкие волокна, являющимся окончанием глазного нерва.
После того как лучи света пройдут сквозь хрусталик, они проникают через стекловидное тело и попадают на внутреннюю очень тонкую оболочку глаза — сетчатку
Как происходит построение изображения
Изображение предмета, формируемое на сетчатке глаза, является процессом совместной работы всех составляющих глазного яблока. Поступающие световые лучи преломляются в оптической среде глазного яблока, воспроизводя на ретине изображения окружающих предметов. Пройдя сквозь все внутренние слои, свет, попадая на зрительные волокна, раздражает их и в определенные мозговые центры передаются сигналы. Благодаря этому процессу, человек способен к зрительному ощущению предметов.
Очень долгое время исследователей волновал вопрос, какое изображение получается на сетчатке глаза. Одним из первых исследователей этой темы стал И. Кеплер. В основе его исследований лежала теория о том, что изображение, построенное на сетчатой оболочке глаза, находится в перевернутом состоянии. Для того чтобы доказать эту теорию, он построил специальный механизм, воспроизведя процесс попадания световых лучей на сетчатую оболочку.
Немногим позже данный эксперимент был повторен французским исследователем Р. Декартом. Для проведения эксперимента он использовал бычий глаз, с удаленным слоем на задней стенке. Этот глаз он поместил на специальном постаменте. В результате на задней стенке глазного яблока, он смог наблюдать перевернутую картинку.
Исходя из этого, следует вполне закономерный вопрос, почему человек видит окружающие предметы правильно, а не в перевернутом виде? Это происходит в результате того, что вся зрительная информация поступает в мозговые центры. Помимо этого, в определенные отделы головного мозга, поступает информация от других органов чувств. В результате анализа, мозг корректирует картинку и человек получает правильную информацию об окружающих его предметах.
Сетчатая оболочка – центральное звено нашего зрительного анализатора
Этот момент был очень точно подмечен поэтом У. Блейком:
Посредством глаза, а не глазом
Смотреть на мир умеет разум.
В начале девятнадцатого века, в Америке, был поставлен интересный эксперимент. Его суть заключалась в следующем. Испытуемый одевал специальные оптические линзы, изображение на которых имело прямое построение. В результате этого:
- зрение экспериментатора полностью перевернулось;
- все окружающие его предметы стали находится кверху ногами.
Продолжительность эксперимента привела к тому, что в результате нарушения зрительных механизмов с другими органами чувств, начала развиваться морская болезнь. Приступы тошноты одолевали ученого в течение трех дней, с момента начала эксперимента. На четвертый день опытов, в результате освоения мозга с данными условиями, зрение вернулось к нормальному состоянию. Задокументировав эти интересные нюансы, экспериментатор снял оптический прибор. Так как работа мозговых центров, была направлена на получение картинки, полученной с помощью прибора, в результате его снятия зрение испытуемого снова перевернулось вверх тормашками. На этот раз его восстановление заняло около двух часов.
Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов
При проведении дальнейших исследований выяснилось, что проявлять такую способность к адаптации, способен лишь мозг человека. Использование таких приборов на обезьянах, привело к тому, что они впадали в коматозное состояние. Это состояние сопровождалось угасанием рефлекторных функций и низкими показателями кровяного давления. В точно такой же ситуации, таких сбоев в работе организма человека не наблюдается.
Довольно интересен тот факт, что и мозг человека не всегда может справиться со всей поступающей зрительной информацией. Когда происходит сбой в работе определенных центров, появляются зрительные иллюзии. В результате чего, рассматриваемый предмет может изменять свою форму и строение.
Существует еще одна интересная отличительная черта зрительных органов. В результате изменения дистанции от оптической линзы до определенной фигуры, изменяется дистанция и до её изображения. Возникает вопрос, в результате чего картинка сохраняет свою четкость, когда человеческий взгляд меняет свой фокус, с предметов, находящихся в значительном удалении, на расположенные более близко.
Результат этого процесса достигается при помощи мышечных тканей, расположенных возле хрусталика глазного яблока. В результате сокращений они изменяют его контуры, изменяя фокусировку зрения. В процессе, когда взгляд сфокусирован на предметах, находящихся в отдалении, данные мышцы находятся в состоянии покоя, что почти не изменяет контур хрусталика. Когда фокусировка взгляда направлена на предметах, расположенных вблизи, мышцы начинают сокращаться, хрусталик искривляется, а сила оптического восприятия увеличивается.
Данная особенность зрительного восприятия получала название аккомодацией. Под этим термином рассматривается тот факт, что зрительные органы способны приспосабливаться к фокусировке на предметах, расположенных на любом удалении.
Долгое рассматривание предметов, расположенных очень близко, может вызвать сильное напряжение зрительных мышц. В результате их усиленной работы, может появиться зрительное утопление. Для того чтобы избежать этого неприятного момента, при чтении или работе за компьютером, расстояние должно составлять не менее четверти метра. Такую дистанцию называют дистанцией ясного зрения.
оптическую систему глаза составляют роговица, хрусталик и стекловидное тело.
Преимущество двух зрительных органов
Наличие двух зрительных органов, существенно увеличивает размеры поля восприятия. Кроме того, появляется возможность различать расстояние, отделяющее предметы от человека. Это происходит потому, что на сетчатой оболочке обоих глаз, происходит разное построение картинки. Так картинка, воспринимаемая левым глазом, соответствует взгляду на предмет с левой стороны. На втором глазу картинка строится прямо противоположно. В зависимости от приближённости предмета, можно оценить разницу в восприятии. Такое построение изображения на сетчатке глаза позволяет различать объемы окружающих предметов.
Источник