Пигментный эпителий сетчатки на окт
Из сведений об анатомии глаза › Пигментный эпителий и сетчатка глаза
Пигментный эпителий сетчатки обеспечивает множество функций. В начале 19 века исследователи считали, что пигментный эпителий — все лишь непроницаемый фон, предотвращающий рассеивание света при фоторецепции. Спустя 80 лет выяснили, что отделение сенсорной части сетчатки от пигментного эпителия вызывает необратимую потерю зрения. Благодаря этой находке и была установлена значимость пигментного эпителия для процесса фоторецепции. Исследования нашего времени подтвердили взаимосвязь фоторецепторов и клеток пигментного эпителия.
Назначение
Стоит рассмотреть ряд основных функций пигментного эпителия сетчатки
- Эпителий останавливает большие молекулы со стороны хориоидеи;
- Эпителий отвечает за связи сенсорной части сетчатки с пигментным эпителием;
- Абсорбцирует световой поток, отфильтровывая рассеянный свет и увеличивая разрешающую способность глаз;
- Предотвращает прохождение света энергии через склеру;
- Впитывает энергию различных излучателей, вызывая фототермический эффект;
- Захватывает внешние членики палочек и колбочек;
- В процессе гетерофагии перерабатывает элементы структуры указанных палочек и колбочек;
- Обеспечивает процессы превращения, хранения и перемещения витамина А;
- Синтезирует межклеточный матрикс;
- Хранит составляющие для выработки зрительного хроматофора 11-cis Retinal;
- Проводит метаболиты к зрительным клеткам и от них к сосудистой оболочке;
- Перемещает ионы НСО 3,отвечающие за выведение жидкости из субретинального пространства;
- Выводит значительный объем жидкости из стекловидного тела;
- Синтезирует гликозаминогликаны, которые окружают внешние сегменты фоторецепторов.
Топографическая регистрация световой энергии обеспечивается тем, что меланиновые гранулы абсорбируют энергию света посредством внешних сегментов фоторецепторов.
Клетки фоторецепторов окружают отростки клеток пигментного эпителия, которые содержат меланиновые зерна. Благодаря этому каждый рецептор надежно изолирован.
По мере усиления внешнего освещения зерна меланина смещаются в клеточные отростки пигментного эпителия, усиливая степень изоляции фоторецепторов.
Рецепторы, которые находятся на базальной и латеральной поверхностях эпителиальных клеток, отвечают за поглощение и перемещение витамин А внутри глаза.
Причиной развития многих заболеваний (в частности — серозной хориоретинопатии, дистрофии сетчатки и возрастной макулопатии) является как раз дисфункция пигментного эпителия. При диагностике аномалий данные изменения хорошо выражены офтальмоскопически.
Сведения из анатомии
Пигментный эпителий находится между сенсорной частью сетчатки и хориокапиллярным слоем сосудистой оболочки. По своему строению это одинарный слой пигментированных клеток шестиугольной формы. Размеры клеток могут различаться в зависимости от локализации. Клетки пигментного эпителия сетчатки имеют апикальную и базальную части, они
скрепены с апикальной стороны органоидами. Базальная мембрана прилегает к ним с базальной стороны.
Ткань, находящая между хориoкапиллярным слоем сосудистой оболочки и пигментным эпителием называется мембраной Бруха. Часто в ее области при помощи офтальмоскопии
можно выявить друзы, причиной которым — процессы старения или заболеваний.
Мембрана Бруха обеспечивает многие функции — транспорт питательных веществ и воды и функции фильтра. Работа мемебраны нарушается из-за дегенерации пигментного эпителия и макулярной области в ходе естественного старения.
Интерфоторецепторный матрикс — это пространство с сложным химическим составом, находящееся между мембраной фоторецепторов и цитоплазматической мембраной микроворсинок. Вырабатывется это вещество клетками пигментного эпителия. Интерфоторецепторный матрикс явялется часью механизмов, обеспечивающих обмен веществ в сетчатке глаз. Также ои помогает процессам фагоцитоза наружных фоторецепторов. Отслойка сетчатки — типичный случай разрушения структуры матрикса.
В разных участках пигментного эпителиоцита цитоплазма имеет отличающееся ультраструктурное строение. Именно по этой причине цитоплазму клетки условно разделяют на 3 зоны.
Поскольку фагоцитарная активность клеток пигментного эпителия является одной из основных функций, их цитоплазма содержит фаголизосомы.
Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Одна клетка пигментного эпителия кролика в сутки подвергает лизису 2000 дисков в парафовеолярной области сетчатки, 3500 дисков в перифовеолярной области и почти 4000 по периферии сетчатки. Отмечено, что при интенсивном освещении количество фагосом увеличивается. Клетки пигментного эпителия отщепляют наружные членики колбочек таким же образом, как и палочек, но более интенсивно после прекращения освещения. Процесс разрушения наружных члеников колбочек и палочек фоторецепторов и их утилизации является адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата.
Часто в состав цитоплазмы клеток пигментного эпителия входит липофусцин, так называемый «пигмент старения», находящийся во многих тканях организма и по мере старения
только увеличивающийся. Липофусцин образуется при перекисном окислении клеточных компонентов, в частности, липидов. Липофусцин обнаруживается и в пигментном эпителии сетчатки, в клетках заднего полюса. К преклонному возрасту липофусциновые гранулы составляют до 20 % от общего объема эпителиоцитов. Если содержание липофусцина существенно увеличивается к старости, число меланосом при этом наоборот уменьшается. Таким образом, ухудшение зрения с возрастом — вполне закономерный процесс, связанный с изменением баланса химических веществ в структуре глаз.
Вверх
Источник
Файзрахманов Р.Р., Гильманшин Т.Р., Кудашева З.А.
Оптическая когерентная томография (ОКТ) является методом, позволяющим получить изображение слоёв сетчатки, наиболее близкое к гистологическому. Совершенствование метода ОКТ, создание и внедрение в практику новых его модификаций с высоким разрешением и высокой степенью визуализации мелких объектов (spectral-domain OCT – SD-OCT и swept-source OCT – SS-OCT) способствуют постоянному расширению знаний о строении заднего отрезка глаза, совершенствованию трактовки данных ОКТ [1–3]. Современные методики ОКТ обеспечивают хорошую визуализацию низко- и высокоэхогенных структур и позволяют детально визуализировать структуру сетчатки в норме и при различных патологических процессах. В 2014 году Международной комиссией по номенклатуре (International Nomenclature for Optical Coherence Tomography Panel) предложен уточнённый вариант трактовки нормальной ОКТ анатомии сетчатки.
Современный вариант послойного ОКТ-картирования включает следующие ретинальные структуры:
пигментный эпителий сетчатки (Retinal Pigment Epithelium, RPE) с мембраной Бруха (Bruch membrane), отделяющие хориоидею от наружных ретинальных слоёв;
наружные сегменты фоторецепторов (outer segments of photoreceptors – OS);
наружный ядерный слой (Outer Nuclear Layer, ONL), соответствующий ядрам фоторецепторов;
наружный плексиформный слой (Outer Plexiform Layer, OPL), соответствующий синапсам биполярных клеток с фоторецепторами;
внутренний ядерный слой (Inner Nuclear Layer, INL), образован ядрами биполярных клеток, а также амакриновых, горизонтальных и мюллеровских клеток;
внутренний плексиформный слой (Inner Plexiform Layer, IPL), содержит синапсы между аксонами биполярных клеток и дендритами ганглиозных и амакриновых клеток;
cлой ганглиозных клеток (Ganglion Cell Layer, GCL);
cлой нервных волокон (Retinal Nerve Fiber Layer, RNFL), представляет собой аксоны ганглиозных клеток;
внутренняя пограничная мембрана (Internal Limiting Membrane, ILM) [1, 2].
Наружная сетчатка представлена слоями между внутренней поверхностью наружного ядерного слоя и внутренней поверхностью слоя пигментного эпителия.
Ядерные слои сетчатой оболочки обычно гипорефлективны, а плексиформные слои – гиперрефлективны, причём как в наружной, так и во внутренней сетчатке.
Cогласно OКТ с высоким поперечным (до 15 мкм) и продольным (между 4 и 7 мкм) разрешением, в области наружной сетчатки визуализируются четыре зоны, представляющие на В-сканах 4 гиперрефлективные линии. К ним относятся:
1. Наружная пограничная мембрана (External Limiting Membrane, ELM), которая располагается на границе между наружным ядерным слоем и отростками фоторецепторов и представляет собой соединительные кластеры между клетками Мюллера и фоторецепторами.
2. Эллипсоидная зона (Ellipsoid Zone, EZ), ранее называемая линией соединения между наружными (OS) и внутренними (IS) сегментами фоторецепторов (IS/OS junction), формируется митохондриями, расположенными в наружной части внутренних сегментов фоторецепторов. По мнению большинства авторов [3, 4], именно митохондрии обеспечивают высокую оптическую плотность данного участка фоторецептора.
3. Зона сочленения колбочек с пигментным эпителием (мембрана Вирхова), которая состоит из плотных соединений между клетками пигментного эпителия и наружными сегментами фоторецепторов.
4. Комплекс «пигментный эпителий – мембрана Бруха».
Зона фовеолярного углубления отличается особой архитектоникой ретинальных слоёв. По направлению к центру фовеолы наблюдается увеличение толщины наружного ядерного слоя и постепенное исчезновение внутренних слоев нейроэпителия сетчатки. Расстояние между пигментным эпителием, мембраной Вирхова и линией IS/OS в центре фовеа увеличено за счёт большей длины наружных сегментов колбочек. Гиперэхогенная линия эллипсоидной зоны в зоне центральной ямки удаляется от линии пигментного эпителия и принимает форму треугольной крыши (рис.).
Толщина фовеального комплекса «наружный сегмент – пигментный эпителий» (FOSPET) представляет собой расстояние между внутренней границей линии эллипсоидной зоны и наружной границей линии пигментного эпителия сетчатки в фовеоле.
Питание внутренней и наружной сетчатки осуществляется из разных источников: её внутренние шесть слоёв кровоснабжаются за счёт ретинальных капиллярных сплетений из системы центральной артерии сетчатки, а наружные слои – из хориокапиллярного слоя собственно сосудистой оболочки [4, 5].
Ретинальная патология часто сопровождается изменениями наружной сетчатки. Так, толщина наружных ретинальных слоёв уменьшается при многих дистрофических состояниях сетчатки, а увеличивается при её отёке разной этиологии. При этом утрачивается нормальная архитектура ретинальных пластов, сетчатка утрачивает свою структуру и её дифференциация становится крайне затруднительной или даже невозможной. В наружных ретинальных слоях часто аккумулируется жидкость при воспалительном и диабетическом макулярном отёке, или при таковых, вызванных сосудистой патологией, например окклюзией вен или неоваскуляризацией. Такие распространённые заболевания, как диабетическая ретинопатия, окклюзия ретинальных сосудов, возрастная макулярная дегенерация, эпиретинальная мембрана и (или) витреомакулярный тракционный синдром, миопические изменения, центральная серозная хороретинопатия и др., в 85% случаев вызывают изменения структур наружной сетчатки, особенно её эллипсоидной зоны и наружной пограничной мембраны, что сопровождается ухудшением остроты зрения. Разнообразные изменения в наружных ретинальных структурах имеют явную прямую корреляцию с функциональным состоянием органа зрения. В частности, многочисленные исследования показали статистически значимую (p<0,05) ассоциацию тяжести поражения наружной сетчатки с ухудшением остроты зрения [6–8].
Наиболее значительная такая корреляция связана с состоянием эллипсоидной зоны и наружной пограничной мембраны. Выявлено, что острота зрения в наибольшей степени зависит от сохранности эллипсоида при диабетическом макулярном отёке (ДМО) и тромбозе ретинальных вен. Так, ухудшение состояние слоя IS/OS сопровождается снижением остроты зрения, и наоборот, восстановление данной структуры обусловливает восстановление функции зрения [6, 9, 10]. Причинами обширного поражения фоторецепторов являются диабетическая и лучевая ретинопатия, гипертоническая ретинопатия, макулярная дегенерация, венозная окклюзия, макулярная телеангиэктазия. Причинами ограниченных изменений фоторецепторов с частым формированием полостей в наружных слоях сетчатки могут являться: острый ретинит или эпителиит, солнечная ретинопатия, синдром множественных исчезающих белых точек, острая зональная оккультная ретинопатия и другие заболевания. Наиболее типичными вариантами изменения наружного контура сетчатки являются друзы пигментного эпителия, атрофия или отслойка пигментного эпителия, куполообразная макула, задняя стафилома склеры при миопии, отслойка сетчатки [2, 9].
Качественная оценка ОКТ основана на анализе морфологии, структуры, эхогенности сетчатки. В ходе количественной её оценки получают информацию о размерах, топографии, толщине и объёме ретинальных структур. Основными видами нарушений гиперрефлективных линий как морфологических составляющих наружной сетчатки на В-сканах ОКТ являются их истончение, прерывистость, искривление, снижение эхогенности и наличие патологических образований. Возможны другие патологические изменения, включающие утрату их структуры или полное разрушение. Наличие указанных изменений линии IS/OS и наружной пограничной мембраны может по праву трактоваться в качестве надёжных маркеров дисфункции или повреждения фоторецепторов. Наиболее чувствительным индикатором состояния фоторецепторов считается эллипсоидная зона, менее подвержена влиянию патологических процессов наружная пограничная мембрана. При поражении фоторецепторов линия эллипсоидной зоны может выглядеть размытой, нечёткой, разорванной, прерывистой, исчезать на ограниченном участке или отсутствовать вообще. Другим примером может служить исчезновение гладкости и деградация концов наружных сегментов отслоенных фоторецепторов при серозной отслойке сетчатки (на фоне увеличения эхогенности и появления неровности и грануляций) [2, 7, 11].
Нарушение линии эллипсоидной зоны можно классифицировать по степени её сохранности:
степень 0 – интактная линия эллипсоидной зоны без нарушений,
степень 1 – слабые нарушения (<400 мкм),
степень 2 – умеренные нарушения (>400 мкм, но <1400 мкм)
степень 3 – значительные нарушения (>1400 мкм или полное её отсутствие) [12].
Ядерные и сетчатые слои необходимо оценивать на предмет толщины, эхогенности и наличия патологических образований. При выявлении аномалии необходимо выявить соотношение толщины отдельных слоёв сетчатки. Оценка текстуры слоя становится важной составляющей анализа ОКТ, например, исследуемая зона может быть зернистой, гранулярной, грубой, волнистой, морщинистой, шероховатой, мелкой, туманной, мутной, гладкой, мелкозернистой, шелковистой, атласной, фиброзной, фиброваскулярной [2, 13].
Стандартный мониторинг сетчатки и макулярной области должен включать в себя также анализ изображений «en face». Данная технология позволяет получить трёхмерные фронтальные срезы, адаптированные под нужную глубину и интересующий исследователя слой. При заболеваниях наружных слоёв сетчатки срез адаптируется в плоскости пигментного эпителия. В данном режиме целесообразно тщательно исследовать различные характеристики: форму, размеры, толщину и некоторые другие параметры патологических образований [2, 14].
Оценка структур наружной сетчатки по сканам ОКТ наиболее точна при отсутствии изменений во внутренних слоях сетчатки, способных экранировать световой пучок и ослаблять визуализацию (ретинальный отёк, интраретинальные геморрагии или помутнения внутриглазных оптических сред, сосуды сетчатки и др.). Экранирующие элементы обычно одиночные, но иногда могут группироваться [3, 6].
Таким образом, современные технологии оптической когерентной томографии позволяют чётко визуализировать, точно и детально интерпретировать в норме и при патологии состояние структур наружной сетчатки, изменение которых являются надёжным маркером и предиктором функционального состояния органа зрения.
Источник
Пигментный эпителий сетчатки — слой клеток, находящихся вне ее нервной оболочки. Образован специфическими светочувствительными элементами ткани и обеспечивает важнейшие функции глаза. Какие функции выполняет такой слой сетчатки? Необходимо рассмотреть более подробно.
Строение сетчатки глаза
Важные функции пигментного слоя эпителия
Функции пигментного слоя сетчатки следующие:
- Поглощение световых лучей. Благодаря этой функции человек может видеть. Пигментный эпителий в сетчатке обеспечивает четкость и контрастность изображений, которые различает человек.
- Фагоцитоз отработанных светочувствительных клеток сетчатки. Если бы такой функции глаза не было, то зрение человека постепенно ухудшалось по причине того, что на светочувствительном слое накапливалось большое количество мертвых клеток. Причем пигментоциты поглощают большое количество отработанных элементов в сутки.
- Пигментный слой использует запасы витамина А. Это же соединение является предшественником вещества, обеспечивающего формирование импульсов, попадающих затем в головной мозг.
- Производит транспортировку питательных веществ и отвод отработанных продуктов распада.
- Обеспечение нормального обмена воды и ионов.
- Теплообмен (регулируется температура глаза).
- Важность пигментного шара сетчатки для обеспечения остроты зрения
Эта оболочка из-за наличия в ней меланина обеспечивает нормальную контрастность изображения. Существуют люди, у которых нарушено образование пигмента меланина (альбиносы). Эпителий в сетчатке практически не содержит никаких пигментов.
Если такой человек находится в ярко освещенной комнате, его острота зрения остается очень низкой даже при условии нормальной коррекции. Иногда в шаре сетчатки может находиться большое количество отработанных продуктов распада пигмента. Это, в свою очередь, приводит к возрастному снижению зрения у таких людей.
Что такое мембрана Бруха? Это светочувствительная пластинка. Она обеспечивает избирательную транспортировку питательных веществ к сетчатке. Часто в области такой мембраны могут образовываться так называемые друзы.
Они формируются в результате неизбежного старения или же заболеваний. Образование друзов нарушает процессы обмена веществ в сетчатке и существенно ухудшает зрение.
Мембрана Бруха вместе с хориокапиллярным слоем образует один комплекс. Он обеспечивает выполнение барьерных функций. Человек не мог бы нормально видеть без функционирования мембраны Бруха.
Что такое отслойка пигментного эпителиального слоя сетчатки?
При этом происходит локальное отслоение макулярного участка от пигментированного слоя. Пациент предъявляет жалобы на нечетность и расплывчатость предметов, появление «тумана» перед глазами. Как правило, бывает поражение только одного глаза. Острота зрения при этом значительно понижается — до 0,4. Тест Амслера показывает искривление прямых линий.
Край отслоенного пигментного слоя виден немного четче. Процесс непременно приводит к макулодистрофии и центральной серозной хориоретинопаии. Лечение отслойки пигментированного эпителиального слоя сетчатой оболочки глаза осуществляется только в офтальмологическом стационаре. Проводятся следующие обследования:
- периметрия;
- визометрия;
- офтальмоскопия;
- тест с помощью сетки Амслера;
- электрокардиограмма;
- ангиография;
- общее клиническое обследование мочи и крови;
- обязательно проведение клинического обследования крови на реакцию Вассермана;
- исследование количества глюкозы в плазме крови.
Обычно лечение болезни консервативное. Назначаются глюкокортикостероидные (внутриконъюнктивальное введение), ангиопротекторные, противовоспалительные неспецифические препараты и некоторые разновидности антигистаминных медикаментов.
При отсутствии эффекта от консервативного лечения назначается лазеротерапия. Она обязательна при рецидивировании заболевания. Лазерная коагуляция показана при условии актуальности вопроса восстановления функции глаз. При благоприятном стечении обстоятельств больным удается сохранить зрение.
Как диагностируются болезни пигментного слоя?
Все заболевания такого слоя сетчатой оболочки диагностируются только после тщательного офтальмологического осмотра. У маленьких детей поставить точный диагноз бывает достаточно сложно. Если вы заметили, что ребенок плохо ориентируется в сумерках или ночное время, его надо показать врачу: вероятно, у него развивается начальная стадия дистрофии пигментного слоя сетчатки.
Диагностика заболеваний данного элемента органов зрения проводится с применением таких методов:
- исследование остроты зрения (как обычного, так и периферического);
- исследование дна глаза;
- электрофизиологическое обследование;
- изучение степени адаптации глаза к темноте.
Профилактика заболеваний пигментного слоя сетчатки
Специфических мер профилактики такого заболевания не разработано. Это связано с тем, что большей частью оно является наследственным. Ведение здорового образа жизни, отказ от вредных привычек, умеренная физическая активность, правильно подобранное питание помогают замедлить разрушение пигментного слоя и понижение зрения.
Своевременно начатое лечение позволяет восстановить данный участок глаза и обеспечить хорошее зрение.
Пигментный слой в сетчатке имеет важнейшее значение для генерации нервных импульсов и передачи информации о полученном изображении в головной мозг. Тем самым обеспечивается нормальное зрение. Лечение всех заболеваний пигментного слоя проводится только в условиях офтальмологического стационара.
Источник