Окклюзии вен сетчатки тульцева

Обзор посвящен возможностям использования фибринолитиков в лечении окклюзии центральной вены сетчатки и ее ветвей. В настоящее время с этой целью наиболее часто используют тканевой активатор плазминогена и проурокиназу. Представлены результаты клинических исследований, свидетельствующие о высоком уровне эффективности и безопасности применения данной группы препаратов.

    В настоящее время патология сетчатки, приводящая к стойкому снижению зрения, слабовидению и инвалидности, является актуальной медико-социальной проблемой. Окклюзии центральной вены сетчатки (ЦВС) и ее ветвей являются одной из ведущих причин стойкого снижения зрения. Они занимают второе место после диабетической ретинопатии по частоте встречаемости среди сосудистой патологии сетчатки, приводящей к снижению зрительных функций [1]. По данным K.A. Ponto at al. (2015), распространенность острых нарушений кровообращения в венозном русле сетчатки среди людей в возрасте 35–74 лет составляет 4,0 на 1000 человек. Частота встречаемости окклюзий ЦВС составляет 0,8 случая на 1000, тогда как распространенность окклюзии ветвей ЦВС – 3,2 на 1000 [2]. При этом, согласно исследованию С.Н. Тульцевой, проведенному в 2009 г. в Северо-Западном регионе, в 59% случаев данное заболевание встречается у лиц старше 60 лет, в 39% – в возрастной группе 41–60 лет и только в 2% случаев – у лиц моложе 40 лет. Следует, однако, отметить тенденцию к определенному «омоложению» заболевания: в аналогичном исследовании, проведенном С.Н. Тульцевой в том же регионе в 2000 г., распределение пациентов по возрасту составляло 74%, 25% и 1% соответственно [3]. Данные о заболеваемости в зависимости от пола противоречивы. Так, R. Klein et al. (2000) указывают на отсутствие «полового предпочтения» у данного заболевания, в то время как исследования С.Н. Тульцевой (2010) свидетельствуют о преобладании женщин (60–66%), а данные K.A. Ponto еt al. (2015) – о столь же заметном преобладании мужчин (63%) [2–5]. 
    В отличие от артериальных окклюзий [6] расстройства венозного кровообращения сетчатки вследствие присущих венам анатомо-физиологических особенностей обусловлены в основном тромботическим процессом [7]. Тромбоз центральной вены сетчатки сходен по характеру своего развития с венозным тромбозом другой локализации [8]. Причинами его являются повреждения стенки сосуда и стаз крови, происходящие на фоне дисбаланса свертывающей и противосвертывающей систем крови [3, 9]. Значительную роль в патогенезе данных патологических изменений играют местные факторы. В области сосудистых аркад, а также за решетчатой пластинкой склеры артериальные и венозные сосуды имеют общую адвентицию. В случае атеросклероза стенки артериолы, а также повышенного артериального давления происходит компрессия вены в области артериовенозного перекреста, приводящая к сужению ее просвета и замедлению тока крови. Также возможны возникновение турбулентного тока крови и повреждение эндотелия с последующим формированием тромба [3].
    Процесс тромбообразования последовательно проходит три стадии. Первая заключается в прилипании (адгезии) тромбоцитов непосредственно к поврежденному эндотелию или к волокнам коллагена, которые выступают в просвет сосуда после повреждения его эндотелия. На второй стадии происходят скопление (агрегация) кровяных пластинок у места повреждения стенки сосуда и выделение ими ряда биологически активных веществ, в т. ч. сосудосуживающих. В результате просвет пораженного сосуда сужается и перекрывается массой тромбоцитов [10]. Следует отметить, что при лечебном воздействии на первых двух стадиях процесс тромбообразования может быть обратимым [11].
    На третьей стадии тромбообразования достаточную силу набирают коагуляционные процессы, в результате которых образуется фибрин, который опутывает тромбоциты, лейкоциты и эритроциты [10]. Затем происходит ретракция кровяного сгустка, и формирование тромба завершается. Третья стадия в химическом отношении уже является необратимой [11]. Через 7–14 дней в тромб начинают внедряться фибробласты, эндотелиальные и воспалительные клетки. В итоге происходит организация тромба – замещение его васкуляризированной соединительной тканью. Мигрировавшие эндотелиальные клетки в это время формируют коллатерали, которые способствуют частичному восстановлению кровотока. Этот процесс занимает от 3 до 8 мес. [9–11].  
    Растворение внутрисосудистых тромбов происходит под действием плазмина, который катализирует протеолитическую деградацию фибрина с образованием растворимых продуктов, что приводит к восстановлению кровотока. Плазмин образуется в результате активации его предшественника плазминогена под действием ряда биологически активных веществ. Различают два пути активации плазминогена: внутренний и внешний. Внутренний механизм осуществляется благодаря плазменным активаторам и активаторам форменных элементов крови. Активация плазминогена по внешнему пути осуществляется за счет тканевого активатора плазминогена (tРА), поступающего из эндотелия сосудов, а также урокиназы, синтезируемой фибробластами, моноцитами/макрофагами и эндотелиальными клетками (рис. 1) [12, 13].
Схема фибринолиза и влияния некоторых фибринолитических препаратов
    В настоящее время имеется большое количество отечественных и зарубежных исследований, посвященных патогенетическому лечению тромбозов ЦВС и ее ветвей при помощи фибринолитиков [4, 14–22]. Основной целью применения препаратов данной группы служит лизис тромба, приведшего к окклюзии ЦВС в стволе зрительного нерва или в области решетчатой пластинки склеры, либо ветви ЦВС в области артериовенозного перекреста, что является важнейшим условием восстановления ретинального кровотока. Даже в случаях развития необратимых изменений в сетчатке быстрое восстановление проходимости ЦВС за счет лизиса тромба может предотвратить дальнейшее снижение зрительных функций и развитие осложнений тромбоза [17, 23].
    Исходя из патофизиологии развития тромбоза применение препаратов с целью тромболизиса может быть эффективным только в первые 7–14 дней после острого нарушения кровообращения в венозном русле, что подтверждается данными отечественных и зарубежных исследований [3, 9, 14, 24–26]. Вместе с тем фибринолитики при интраокулярном применении даже на поздних сроках после тромбоза в бассейне ЦВС в части случаев способны индуцировать отслойку задней гиалоидной мембраны, что, в свою очередь, способствует уменьшению отека сетчатки и улучшению зрительных функций [22, 27–30]. 
    В зарубежных исследованиях в лечении окклюзий ЦВС и ее ветвей наиболее часто используют препараты уже упомянутого выше тканевого активатора плазминогена (tРА) при разных способах их введения; tРА активируется при связывании с фибрином и индуцирует превращение плазминогена в плазмин, который и расщепляет фибриновый сгусток [13]. Ряд исследований свидетельствуют о высоком уровне эффективности и безопасности этого препарата в лечении тромбозов ЦВС [14, 19–22, 31]. Недостатком tРА при его интраокулярном введении является большой молекулярный вес (70 кДа), что несколько замедляет его трансретинальное проникновение [17]. Кроме того, имеются данные и о его токсическом воздействии на сетчатку, притом усиливающемся при наличии тромбоза ЦВС [32–34]. 
    В практике отечественных офтальмологов при остром нарушении кровоснабжения в венозном русле сетчатки чаще используют препарат рекомбинантной проурокиназы человека [4, 15–18]. Проурокиназа обладает рядом преимуществ по сравнению с препаратами tPA. Так, при применении проурокиназы наблюдается низкий риск ретромбозов (до 5%). К тому же препарат не индуцирует гиперкоагуляцию [35–37]. Кроме того, обладая более низким по сравнению с tPA молекулярным весом (54 кДа), при местном интраокулярном введении проурокиназа быстрее проникает в венозную систему сетчатки [17]. Однако ввиду отсутствия полноценных контролируемых исследований вопрос сравнительной эффективности этих двух фибринолитиков до сих пор остается открытым.
    Вместе с тем при системном применении проурокиназа обладает (по сравнению с tPA)  и рядом недостатков. Так, было показано, что в терапевтических концентрациях в плазме проурокиназа индуцирует системный фибринолиз, что значительно повышает риск кровотечений [35]. Кроме того, имеются данные и о том, что внутривенное введение больших доз нативной немодифицированной проурокиназы может повлиять на вероятность активизации и метастазирования опухолей [38–41]. Однако перечисленные нежелательные эффекты проурокиназы проявляются, по всей видимости, только при ее системном применении и достижении терапевтической или более высокой концентрации в плазме крови. Что касается местного применения проурокиназы в офтальмологии, то сведений о подобных эффектах как в литературе, так и в наших клинических наблюдениях  пока не обнаружено. 
    Важно отметить, что в препарате рекомбинантной проурокиназы человека используется не природная проурокиназа, а фермент, относящийся к классу модифицированных проурокиназ с измененным N-концевым рецептор-связывающим доменом [28]. Имеются сведения о том, что эти модифицированные протеазы, в отличие от их природной формы, не связываются с урокиназными рецепторами на поверхности клеток и, следовательно, не участвуют в процессах миграции и ремоделирования тканей, в т. ч. в активизации процесса метастазирования опухолей [28, 38].
    Многочисленные отечественные и зарубежные исследования посвящены применению фибринолитиков при тромбозах ЦВС с использованием различных путей введения [4, 9, 15–17, 25, 42–44].
    Так, ряд исследований был посвящен анализу эффективности и безопасности системного введения таким больным различных препаратов рассматриваемой группы, в частности, фибринолизина, стрептокиназы, tPA и др. [9, 25, 42–44].     Исследователи отметили повышение остроты зрения пораженного глаза в течение нескольких месяцев, что свидетельствует об эффективности системного применения фибринолитиков. Однако данная методика так и не получила широкого распространения вследствие высокой вероятности развития системных геморрагических осложнений.
     В то же время в большинстве современных исследований предпочтение закономерно отдается местному применению фибринолитиков, позволяющему добиться высокой концентрации препарата в зоне локализации тромботического процесса при минимальном риске развития системных побочных эффектов. 
    В отечественной офтальмологии, как известно, наиболее распространенными методами инъекционного введения ферментов являются субконъюнктивальный, пара- и ретробульбарный [4, 7]. Их преимущество состоит в малой травматичности и высокой доступности для практикующего врача, в т. ч. и в амбулаторном звене офтальмологической помощи. Однако необходимость преодоления ферментом барьера в виде фиброзной капсулы глаза служит причиной недостаточной эффективности рассматриваемых методов и обусловливает необходимость разработки и внедрения в практику альтернативных способов введения ферментных препаратов. При этом особого внимания заслуживают ряд методов подведения лекарственного вещества максимально близко к зоне локализации тромба в венозном русле сетчатки: интравитреальные инъекции, канюлирование ретинальной вены, а также суб- и эпиретинальное его введение [17].
    В частности, С.В. Сдобниковой с соавт. (2007) предложен способ лечения тромбоза ЦВС [17], заключающийся в проведении витрэктомии (в т. ч. с пилингом внутренней пограничной мембраны) совместно с канюлированием ретинальной вены. Эта методика позволяет под визуальным контролем ввести тромболитический препарат максимально близко к месту окклюзии, что обеспечивает высокую концентрацию препарата непосредственно в зоне формирования тромба. Кроме того, в ходе этого вмешательства осуществляется механическое воздействие на тромб турбулентным током раствора фибринолитика, что также может привести к его смещению в проксимальном направлении [17]. К недостаткам метода относятся его относительная техническая сложность, а также потребность в дорогостоящем специальном оборудовании (микроманипулятор и микроинжектор) для обеспечения дозированной инфузии препарата. Велик также и риск достаточно серьезных осложнений такой операции: развития гемофтальма в ходе сквозной перфорации сосуда, а также повреждения и отслойки сетчатки [17, 45–49].
    Достаточно оригинальным способом интраокулярного введения фибринолитического препарата также является его субретинальная инъекция, осуществляемая из витреальной полости после витрэктомии в сочетании с газожидкостным обменом [17, 30, 50]. Фибринолитик вводят в перипапиллярную область, где таким путем создается депо препарата. В дальнейшем трансневрально и с остаточным кровотоком через ретинальные капилляры происходит постепенное проникновение тромболитика к месту окклюзии. Данный способ введения препарата позволяет достичь его высокой концентрации в зоне тромбоза, однако все же обладает рядом недостатков. К ним, в частности, относятся риск механического повреждения нейроэпителия и нервных волокон в перипапиллярной области при отслаивании сетчатки вводимым препаратом и повышение вероятности проявления ретинотоксического эффекта последнего.
    Несколько менее инвазивна методика, включающая проведение субтотальной витрэктомии, выполнение стандартной процедуры газожидкостного обмена и эпиретинальное введение фибринолитика [17, 51–53]. Однако и этот метод оказался не лишенным недостатков, одним из которых явилась большая вероятность проявления токсического эффекта фибринолитика за счет его воздействия в высокой концентрации на макулярную и перипапиллярную области сетчатки [17]. Также в ходе проведения рассматриваемых исследований в ряде случаев были отмечены такие свойственные витреальным хирургическим вмешательствам осложнения, как гемофтальм и формирование эпиретинальных мембран [52, 53].
    Также описан способ суперселективного введения раствора фибринолитика в arteria ophthalmica. Процедура проводилась под местной анестезией в отделении нейрорадиологии специалистом по катетеризации интракраниальных сосудов. Техника манипуляции заключается в следующем. Через бедренную артерию проводится катетеризация внутренней сонной артерии катетером диаметром 5 Fr, после чего выполняется ангиография для локализации места изгиба arteria carotis interna. Затем катетер перемещают в проксимальную экстракраниальную часть внутренней сонной артерии. Далее микрокатетер диаметром 1,8 Fr или 1,5 Fr проводят в устье arteria ophthalmica и вновь выполняют ангиографию, чтобы удостовериться в правильности положения микрокатетера, после чего осуществляют медленную инфузию раствора фибринолитика в течение 40 мин. Вся процедура занимает около 1 ч, а после ее завершения пациенту показан строгий постельный режим в течение 12–24 ч.  Помимо очевидной технической сложности данной процедуры следует отметить, что в послеоперационном периоде у части пациентов отмечались местные геморрагические осложнения в виде интраретинальных кровоизлияний и гемофтальма [54].
    В силу рассмотренных обстоятельств упомянутые методы доставки фибринолитических препаратов к месту локализации тромба так и не получили широкого практического применения.
    В настоящее время при лечении окклюзий ЦВС и ее ветвей из методов внутриглазного введения препарата наиболее часто используется техника интравитреальной инъекции фибринолитика (500 МЕ проурокиназы или 50 мкг tPA) через плоскую часть цилиарного тела. В ходе манипуляции на первом этапе проводят эпибульбарную анестезию и закапывают 5–10% раствор поливидон-йода. Затем инъекционную иглу диаметром 30G или даже тоньше вводят внутрь глаза перпендикулярно склере на отдалении 3,5–4 мм от лимба между зонами прикрепления вертикальной и горизонтальной прямых мышц и инъецируют раствор препарата в стекловидное тело [55]. При использовании этого пути введения препарат диффундирует через внутреннюю пограничную мембрану сетчатки и проникает в венозную систему через капилляры, поврежденные при тромбозе в результате нарушения гематоретинального барьера. Далее, с остаточным венозным кровотоком, препарат достигает места окклюзии ЦВС или ее ветви и вызывает лизис находящегося там тромба. Достоинствами данного метода являются его техническая простота и относительно небольшая травматичность [17, 55, 56]. Однако имеются сведения, что интравитреальное введение фибринолитика может все же привести к развитию геморрагических осложнений и способствовать усилению макулярного отека за счет лизиса мелких вторичных тромбов на уровне ретинальных капилляров с последующим повышением венозного давления (при сохранении окклюзии ЦВС) и усилением экссудации [17]. Кроме того, при любой интравитреальной инъекции существует риск повреждения хрусталика, а также развития эндофтальмита и отслойки сетчатки. Тем не менее описанные осложнения встречаются достаточно редко, и, к тому же, большинство из них может быть предотвращено. В частности, частота развития эндофтальмита после интравитреальных инъекций различных препаратов сегодня не превышает 0,05% [55, 57]. При этом целый ряд отечественных и зарубежных исследователей отмечают высокую эффективность и относительную безопасность данного метода лечения [4, 14–16, 18–23, 56].
    В целом необходимо отметить, что применение фибринолитических препаратов в терапии тромбозов ЦВС и ее ветвей является патогенетически оправданным. Многочисленные отечественные и зарубежные исследования свидетельствуют об эффективности и высоком профиле безопасности данной группы лекарственных средств, прежде всего tPA и проурокиназы, при их местном внутриглазном введении. Наиболее эффективным является применение данных препаратов в течение первых 7–14 дней от момента сосудистой катастрофы за счет полного или частичного тромболизиса, однако и в более поздние сроки их использование также может быть оправданно в целях индуцирования отслойки задней гиалоидной мембраны и последующего уменьшения отека сетчатки.

Читайте также:  Что такое контузия сетчатки глаза

Сведения об авторах: Баранов Андрей Юрьевич – врач-офтальмолог; Бржеский Владимир Всеволодович – д.м.н., профессор. ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России. 194100, Санкт-Петербург, ул. Литовская, 2. Контактная информация: Баранов Андрей Юрьевич, e-mail: homeandrey@rambler.ru. Прозрачность финансовой деятельности: никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах. Конфликт интересов отсутствует. Статья поступила 05.09.2017.
About the authors: Andrei Yu. Baranov – ophthalmologist; Vladimir V. Brzhesky — professor. Saint Petersburg State Medical Pediatric University. 2, Lithuanian Str., Saint Petersburg, 194100, Russian Federation. Contact information: Andrei Yu. Baranov, e-mail: homeandrey@rambler.ru. Financial Disclosure: no author has a financial or property interest in any material or method mentioned. There is no conflict of interests. Received 05.09.2017. 

Источник