Нейроциты сетчатки и их топография

Сетчатка глаза
(retina)
— световоспринимающий аппарат,
располагающийся кнутри от сосудистой
оболочки. В сет­чатке имеются
светочувствительная часть, расположенная
в заднем отделе глаза, и несветочувствительная
часть, распо­ложенная ближе к ресничному
телу.

Светочувствительная
часть сетчатки

включает слой пигментного эпителия и
нейронный слой, который включает еще 9
слоев + пигментный слой = 10 слоев. Нейронный
слой состоит из цепи 3 нейронов:

1) фоторецепторные
(палочко­вые — cellula
neurosensorius
bacillifer,
колбочковые — cellula
neurosensorius
conifer);

2) ассоциативные
нейроны (биполяр­ные, горизонтальные,
амокринные);

3) ганглионарные,
или мультиполярные, клетки (neuronum
multipolare).

За счет ядросодержащих
частей этих нейронов образует­ся 3
слоя; в частности, тела светочувствительных
нейронов образуют наружный ядерный
слой (stratum
nuclearis
exter­num);
тела ассоциативных нейронов — внутренний
ядерный слой (stratum
nuclearis
internum);
тела ганглионарных нейро­нов —
ганглионарный слой (stratum
ganglionare).

За счет отростков
этих 3 нейронов образуется еще 4 слоя; в
частности, палочки и колбочки дендритов
фоторецепторных нейронов образуют слой
палочек и колбочек (stratum
fotosensorium);
аксоны фоторецепторных нейронов и
дендриты ассоциативных нейронов в
местах их синаптических связей в
совокупности образуют наружный сетчатый
слой (stratum
plexiforme
externum);
аксоны ассоциативных нейронов и дендриты
ганглионарных в местах их синаптической
свя­зи образуют внутренний сетчатый
слой (stratum
plexiforme
internum);
аксоны ганглионарных нейронов образуют
слой нервных волокон (stratum
neurofibrarum).

Таким образом, за
счет тел нейронов образуется 3 слоя и
за счет отростков еще 4 слоя, т. е. всего
7 слоев. А где же еще 3 слоя? Восьмым слоем
можно считать слой пигментных кле­ток
(stratum
pigmentosum).
Но где же еще 2 слоя? В состав ней­ронного
слоя сетчатки входят нейроглиальные
клетки, преиму­щественно волокнистые.
Они имеют вытянутую форму и рас­полагаются
радиально, почему и называются
радиальными
(gliocytus
radialis).
Периферические отростки радиальных
глио- цитов образуют сплетение между
слоем палочек и колбочек и наружным
ядерным слоем. Это сплетение называется
наруж­ной глиальной пограничной
мембраной (stratum
limitans
exter­num).
Внутренние отростки этих глиоцитов
своим сплетением образуют внутренний
пограничный слой (stratum
limitans
in­ternum),
расположенный на границе со стекловидным
телом.

Таким образом, за
счет тел нейронов, их отростков,
пиг­ментного слоя и отростков радиальных
глиоцитов образуется 10 слоев:

1) пигментный слой;

2) слой палочек и
колбочек;

3) на­ружный
пограничный слой;

4) наружный ядерный
слой;

5) на­ружный сетчатый
слой;

6) внутренний ядерный
слой;

7) вну­тренний
сетчатый слой;

8) ганглионарный
слой;

9) слой нер­вных
волокон;

10) внутренний
пограничный слой.

Глаз человека
называется
инвертивным.

Это означает, что рецепторы фоторецепторных
нейронов (палочки и кол­бочки) направлены
не навстречу к световым лучам, а в
обрат­ную сторону. В данном случае
палочки и колбочки направле­ны в
сторону пигментного слоя сетчатки
глаза. Чтобы луч света мог достигнуть
палочек и колбочек, ему необходимо
пройти внутренний пограничный слой,
слой нервных воло­кон, ганглионарный
слой, внутренний сетчатый, внутрен­ний
ядерный, наружный сетчатый, наружный
ядерный, на­ружный пограничный и,
наконец, слой палочек и колбочек.

Местом наилучшего
видения

сетчатки является желтое пятно (macula
flava).
В центре этого пятна имеется централь­ная
ямка (fovea
centralis).
В центральной ямке резко истонче­ны
все слои сетчатки, кроме наружного
ядерного, состояще­го преимущественно
из тел колбочковых фоторецепторных
нейронов, являющихся рецепторными
приборами цветного видения.

Кнутри от желтого
пятна располагается слепое пятно
(ma­cula
cecum)
— сосок зрительного нерва (papilla
nervi
optici).
Сосок зрительного нерва образован за
счет аксонов ганглионарных нейронов,
входящих в слой нервных волокон. Таким
образом, аксоны ганглионарных нейронов
образуют зритель­ный нерв (nervus
opticus).

Строение фотосенсорных
нейронов (первично

чув­ствующих
клеток).

Палочковые фотосенсорные нейроны
(neurocytus
photosensorius
bacillifer).
Их тела располагаются в наружном ядерном
слое. Участок тела вокруг ядра нейрона
называется
перикарионом.

От перикариона отходит цен­тральный
отросток — аксон, который заканчивается
синап­сом с дендритами ассоциативных
нейронов. Перифериче­ский отросток
— дендрит заканчивается фоторецептором
— палочкой.

Палочка
фоторецепторного нейрона

состоит из двух сег­ментов, или
члеников: наружного и внутреннего.
Наружный сегмент состоит из дисков,
количество которых достигает 1000. Каждый
диск представляет собой сдвоенную
мембрану.

Толщина диска 15 нм,
диаметр 2 мм; расстояние между дис­ками
15 нм, расстояние между мембранами внутри
диска 1 нм. Эти диски образуются следующим
образом. Цитолемма наружного членика
впячивается внутрь — образуется
сдво­енная мембрана. Затем эта сдвоенная
мембрана отшнуровывается, и образуется
диск.

В мембранах диска
имеется зрительный пурпур — родо­псин,
состоящий из белка — опсина и альдегида
витамина А— ретиналя. Таким образом,
чтобы палочки функционировали, необходим
витамин А.

Наружный членик
соединен с внутренним при помощи
реснички, состоящей из 9 пар периферических
микротубул и 1 пары центральных
микротрубочек. Микротубулы прикре­пляются
к базальному тельцу.

Во внутреннем
членике

содержатся органеллы общего значения
и ферменты. Палочки воспринимают
черно-белый цвет и являются приборами
сумеречного зрения. Количество палочковых
нейронов в сетчатке глаза человека
составляет около 130 миллионов. Длина
наиболее крупных палочек до­стигает
75 мкм.

Колбочковые
фоторецепторные нейроны

состоят из перикариона, аксона
(центрального отростка) и дендрита
(пе­риферического отростка). Аксон
вступает в синаптическую связь с
ассоциативными нейронами сетчатки,
дендрит за­канчивается фоторецептором,
называемым
колбочкой.

Кол­бочки отличаются от палочек
строением, формой и содержа­нием
зрительного пурпура, который в них
(колбочках) назы­вается
йодопсином.

Наружный членик
колбочки состоит из 1000 полудисков.
Последние образуются путем впячивания
цитолеммы наруж­ного сегмента, не
отшнуровываются от нее. Поэтому полуди­ски
остаются соединенными с цитолеммой
наружного сегмен­та. Наружный членик
соединяется с внутренним при помощи
реснички.

Внутренний членик
колбочки включает органеллы обще­го
значения, ферменты и эллипсоид, состоящий
из липидной капли, окруженной плотным
слоем митохондрий. Эллипсо­иды играют
определенную роль в цветном восприятии.

Количество колбочковых
фоторецепторных нейронов в сетчатке
глаза человека составляет 6-7 миллионов,
они яв­ляются приборами цветного
зрения. В зависимости от того, какой тип
пигмента содержится в мембранах колбочек,
одни из них воспринимают красный цвет,
другие — синий, третьи — зеленый. При
помощи комбинации этих трех типов
колбочек человеческий глаз способен
воспринимать все цве­та радуги. Наличие
или отсутствие того или иного пигмента
в колбочках зависит от наличия или
отсутствия соответ­ствующего гена в
половой Х-хромосоме.

Если отсутствует
пигмент, воспринимающий красный цвет,
— это протанопия,
зеленый цвет — дейтеранопия.

Читайте также:  Лазерная коагуляция сетчатки в томске

Ассоциативные
нейроны сетчатки.

К ассоциативным нейронам сетчатой
оболочки глаза относятся биполярные,
горизонтальные и амокринные нейроциты.

Тела биполярных
нейроцитов

(neurocytus
bipolaris)
распо­лагаются во внутреннем ядерном
слое. Их дендриты контак­тируют с
аксонами нескольких палочковых нейронов
и од­ним колбочковым, аксоны — с
дендритами ганглионарных нейронов.
Таким образом, биполярные нейроны
передают зрительные импульсы с
фоторецепторных на ганглионарные
нейроны.

Тела горизонтальных
нейроцитов

располагаются во вну­треннем ядерном
слое ближе к фоторецепторным нейронам.
Дендриты горизонтальных нейронов
контактируют с аксо­нами фоторецепторных
нейронов, их длинные аксоны идут в
горизонтальном направлении и образуют
аксо-аксональные (тормозные) синапсы с
несколькими фоторецепторными клетками.
Благодаря горизонтальным нейронам
импульс, идущий в центральной части,
передается на биполярные клетки, а
импульс, проходящий латерально от
центра, тормо­зится в области
аксо-аксональных синапсов. Это называется
латеральным торможением, благодаря
которому обеспечива­ется четкость и
контрастность изображения на сетчатке.

Тела амокринных
нейроцитов

располагаются во внутрен­нем ядерном
слое, ближе к ганглионарным клеткам.
Амокрин­ные клетки контактируют с
ганглионарными нейронами и выполняют
такую же функцию, как и горизонтальные
ней­роны, но только по отношению к
ганглионарным нейронам.

Ганглионарные
(мулътиполярные) нейроциты

располага­ются в ганглионарном слое
сетчатки. Их дендриты контакти­руют
с аксонами биполярных нейроцитов и с
амокринными клетками, а аксоны образуют
слой нервных волокон, кото­рые,
соединяясь вместе в области соска
зрительного нерва, образуют зрительный
нерв.

Зрительный путь
начинается от рецепторов фоторецеп­торных
нейронов (палочек и колбочек), где под
влиянием све­товых лучей начинается
химическая реакция с последующим
распадом зрительного пигмента, происходит
повышение проницаемости цитолеммы
палочек и колбочек, в результате чего
возникает световой импульс. Этот импульс
передается сначала на биполярный, потом
на ганглионарный нейрон, за­тем
поступает на его аксон. Из аксонов
ганглионарных нейро­нов формируется
зрительный нерв, по которому импульс
на­правляется в сторону центральной
нервной системы. Через зрительное
отверстие (foramen
opticum)
зрительный нерв по­ступает в полость
черепа и подходит к перекресту зрительного
нерва (chiasma
opticum).
Здесь внутренние половинки нерва
перекрещиваются, а наружные идут не
перекрещиваясь. От зрительного перекреста
начинается зрительный тракт (tractus
opticus).
В составе зрительного тракта аксоны
ган­глионарных нейронов сетчатки
направляются к 4-му нейро­ну, заложенному
в подушках зрительных бугров, латераль­ных
коленчатых телах и в верхних буграх
четверохолмия; аксоны четвертых нейронов,
заложенных в подушках зри­тельных
бугров и латеральных коленчатых телах,
направля­ются в шпорную борозду коры
головного мозга, где находит­ся
центральный конец зрительного анализатора.

Пигментный слой
сетчатки глаза.

Слой пигментных эпителиоцитов сетчатой
оболочки глаза включает около 6 миллионов
пигментных клеток, которые своей
базальной по­верхностью лежат на
базальной мембране сосудистой обо­лочки.
Светлая цитоплазма пигментных клеток
(меланоцитов) бедна органеллами общего
значения, содержит большое количество
пигмента (меланосом). Ядра меланоцитов
имеют сферическую форму. От апикальной
поверхности меланоци­тов отходят
отростки (микроворсинки), которые заходят
между концами палочек и колбочек. Каждую
палочку окру­жают 6-7 таких отростков,
каждую колбочку — 40 отростков. Пигмент
этих клеток способен мигрировать из
тела клетки в отростки, а из отростков
в тело меланоцита. Эта миграция
осуществляется под влиянием
меланоцитостимулируюгцего гормона
промежуточной части аденогипофиза и
при участии филаментов внутри самой
клетки.

Функции пигментного
слоя сетчатки многочисленны:

1) яв­ляется
составной частью адаптационного аппарата
глаза;

2) участвует в
торможении перекисного окисления;

3) выполня­ет
фагоцитарную функцию;

4) участвует в обмене
витамина А.

Участие пигментного
слоя сетчатки в адаптации гла­за.

При ярком освещении на колбочки и палочки
сетчатки поступает слишком большое
количество световых лучей.

Зрачок при этом
мгновенно суживается, чтобы уменьшить
количество лучей, но глаз чувствует
себя дискомфортно. Тог­да пигмент из
тел клеток начинает мигрировать в
отростки, расположенные между палочками
и колбочками. В результа­те образуется
так называемая пигментная борода.
Поскольку палочки не участвуют в
восприятии цветного зрения, они
уд­линяются и еще глубже погружаются
в пигментную бороду. Колбочки в это
время укорачиваются, чтобы лучи падали
на них. Таким образом, пигментная борода,
подобно ширме, закрывает палочки от
световых лучей. В это время глаз не
ис­пытывает неприятных ощущений.

При слабом освещении
зрачок сразу же расширяется, но глаз
при этом плохо видит предметы. Однако
через неко­торое время контуры
предметов вырисовываются уже более
отчетливо — за это время в пигментном
слое сетчатки про­изошли следующие
изменения. Пигмент из отростков
воз­вращается обратно в тела
пигментоцитов, т. е. уменьшается или
полностью исчезает пигментная борода.
Поскольку кол­бочки не участвуют в
восприятии черно-белого цвета, они
уд­линяются и погружаются в короткую
пигментную бороду. Па­лочки, наоборот,
несколько укорачиваются и отступают
от пигментного слоя, с тем чтобы наибольшее
количество лучей при слабом освещении
падало на их (палочек) наружный чле­ник.
В этот момент человек начинает хорошо
видеть предме­ты в плохо освещенном
помещении.

Соседние файлы в папке ответы по гистологии

  • #
  • #
  • #
  • #
  • #

Источник

Зрительные проводящие пути имеют важнейшее значение в клинической неврологии. Они проходят от сетчатки глаз до затылочных долей коры головного мозга. Большая протяженность путей обусловливает их особенную уязвимость для деми-елинизирующих заболеваний (рассеянный склероз), опухолей мозга или гипофиза, сосудистых поражений в бассейне средней или задней мозговых артерий или черепно-мозговых травм.

К зрительной системе относят: сетчатки, зрительные проводящие пути от сетчаток к стволу мозга и зрительной коре, а также корковые области, выполняющие высшие зрительные функции. В этой главе описаны только сетчатка и зрительные проводящие пути. Высшие зрительные функции обсуждены в главе 29.

Сечатка и зрительные нервы — части центральной нервной системы. Сетчатка эмбриона формируется из выпячивания диэнцефалона — глазного пузырька. Глазной пузырек образует инвагинацию (хрусталик) и становится двуслойным глазным бокалом.

Наружный слой глазного бокала преобразуется в пигментный эпителий зрелой сетчатки. Внутренний (оптический) слой бокала дает начало нейронам сетчатки.

На рисунке ниже показано общее топографическое строение сетчатки эмбриона. Оптический отдел образован тремя главными слоями нейронов: слоем фоторецепторов, который будет прилежать к пигментному слою клеток после резорбции внутрисетчаточного (интраретиналъного) пространства, слоем биполярных нейронов и слоем ганглиозных клеток, которые дают начало зрительному нерву и достигают таламуса и среднего мозга.

Читайте также:  Лечение сетчатки нижний новгород

Сетчатка эмбриона
Сетчатка эмбриона.

Зеленым и красным цветом показаны палочки и колбочки соответственно.

Обратите внимание на инвертированное положение сетчатки. Свет должен пройти через слой волокон зрительного нерва, слой ганглиозных клеток и слой биполярных нейронов, чтобы достичь фоторецепторов. «Причина» расположения фоторецепторов, при котором они «максимально удалены» от источника их возбуждения (света или фотонов), обусловлена многими факторами. Во-первых, при таком расположении апикальные концы фоторецепторов (содержащие светочувствительный фотопигмент) расположены напротив пигментного слоя сетчатки, который способен поглощать любой рассеянный свет или свет, не реагирующий с фоторецепторными клетками. Во-вторых, клетки пигментного эпителия сетчатки выполняют фагоцитирующую функцию.

Светочувствительный фотопигмент палочек имеет короткий период полураспада, что требует его постоянного восполнения. Новый фотопигмент продуцируется в основании палочки и перемещается к верхушке клетки, старые апикальные компоненты сбрасываются и фагоцитируются пигментными клетками сетчатки, а белки используются заново (колбочки не сбрасывают). Наконец, фоторецепторные клетки имеют высокий уровень метаболизма и в наиболее глубоком отделе сетчатки они располагаются ближе всего к капиллярам сосудистой оболочки (лежащим под пигментным эпителием), обеспечивающим их питание.

В точке наиболее острого зрения — ямочке (фовеоле) — слои биполярных и ганглиозных клеток огибают центральную ямку (фовеа), и свет проходит к фоторецепторам с минимальным рассеянием (см. ниже «Специализация центральной ямки»). Центральная ямка зрелого глаза имеет диаметр около 1,5 мм и расположена в центре желтого пятна (macula lutea) шириной 5 мм, множество фоторецепторов которого содержат желтый пигмент. Центральная ямка — область наиболее острого зрения — расположена на зрительной оси—линии, проведен ной от центра зрительного поля глаза через центр хрусталика к центральной ямке. Для фиксации, или фовеации, объекта взгляд направляют точно на него, чтобы свет, отраженный от центра объекта, зафиксировался на центральной ямке.

Аксоны ганглиозных клеток входят в зрительный нерв через головку зрительного нерва (сосок зрительного нерва), лишенную нейронов сетчатки и образующую физиологическое слепое пятно.

Зрительные поля глаз перекрывают друг друга в двух третях общего поля зрения. Кнаружи от этого бинокулярного поля зрения с каждой стороны расположено монокулярное (височное) серповидное поле зрения. При прохождении через зрачок формируется перевернутое изображение, поэтому объекты в левой половине бинокулярного поля зрения проецируются на правую половину каждой сетчатки, а объекты в верхней части зрительного поля — на нижнюю половину. Такое расположение сохраняется на всем протяжении до зрительной коры затылочной доли.

С клинической точки зрения необходимо учитывать, что зрение—это перекрестное чувство. Зрительное поле с одной стороны зрительной оси регистрируется на зрительной коре противоположной стороны. В сущности, правая зрительная кора «видит левое поле зрения» или пространство, и наоборот. Только половина зрительной информации от каждой сетчатки пересекает зрительный перекрест по той простой причине, что другая половина уже пересекла среднюю линию.

Дефекты поля зрения, обусловленные поражением зрительных проводящих путей, всегда описывают с точки зрения пациента, т.е. в отношении полей зрения, а не в отношении топографии сетчатки.

Строение сетчатки. Помимо расположенных рядами фоторецепторных клеток, биполярных и ганглиозных клеток, показанных на рисунке ниже, в сетчатке находятся также две группы поперечно расположенных нейронов: горизонтальные клетки и амакриновые клетки. Все восемь слоев сетчатки составляют единое целое.

Поперечный срез правого глаза
Поперечный срез правого глаза, показана зрительная ось.

Ганглиозные клетки генерируют потенциалы действия, обеспечивающие «необходимую скорость проведения» к таламусу и среднему мозгу. Расстояния между другими клетками очень короткие, поэтому для межклеточного взаимодействия бывает достаточно пассивного электрического заряда (электротонуса) или постепенных изменений мембранного потенциала клетки без образования синаптических контактов и высвобождения нейромедиатора.

1. Фоторецепторы. К фоторецепторным нейронам относят палочки и колбочки.

Палочки функционируют только при сумеречном свете и нечувствительны к цвету (электромагнитное излучение с волнами разной длины). Лишь в небольшом количестве они представлены в наружной части центральной ямки и полностью отсутствуют в ее центре. Колбочки реагируют на яркий свет, восприимчивы к цвету, форме и наиболее многочисленны в центральной ямке (в глазе человека расположено около 130 млн. фоторецепторных клеток; отношение палочек к колбочкам составляет 20:1 во всех отделах за исключением центральной ямки).

Каждая фоторецепторная клетка имеет наружный и внутренний сегменты, а также синаптическое окончание. В наружном сегменте (светочувствительной «органелле») находятся сотни мембранных дисков (у палочек) или мембранных полудисков (в колбочках), в которые упакован зрительный пигмент (родопсин — фотопигмент, поглощающий свет или фотоны и инициирующий каскад молекулярных реакций, приводящий к изменению потенциала фоторецептора и высвобождению нейромедиатора из синаптической области; этот процесс называют фотопреобразованием). Новые диски образуются во внутреннем сегменте палочек и переносятся в наружный сегмент, старые диски удаляются с апикальной области наружного сегмента. Синаптическое окончание контактирует с отростками биполярных и горизонтальных клеток в наружном ретикулярном слое.

Фоторецепторы обладают удивительным свойством гиперполяризации под действием света. В темноте натриевые (Na+) каналы открыты, образуя достаточный положительный электротонус, приводящий к высвобождению нейромедиатора (глутамата) из синаптического окончания к биполярным нейронам. Воздействие света приводит к закрытию натриевых (Na+) каналов, что сопровождается изменением мембранного потенциала фоторецептора, регистрируемого биполярными нейронами. Мри развитии гиперполяризации рецептора высвобождается меньшее количество нейромедиатора, имеющего тормозное действие, а биполярные клетки (и горизонтальные клетки) деполяризуются (возбуждаются). Однако если действие нейромедиатора было бы возбуждающим, происходила бы реполяризация (торможение) данных клеток.

Под действием света происходит гиперполяризация всех палочек, поэтому при высоком уровне освещения их мембранные каналы полностью закрыты, и их вклад в зрение минимален, а зрение обусловлено только функционированием колбочек.

Зрительные поля глаз
(А) Зрительные поля обоих глаз при фиксации в одной точке. Поле зрения правого глаза окрашено голубым цветом.

(Б) Правое поле зрения. Белая точка обозначает слепое пятно правого глаза.

Слои сетчатки
Слои сетчатки:

(1) Пигментный слой. (2) Фоторецепторный слой.

(3) Наружный ядерный слой. (4) Наружный сетчатый слой.

(5) Внутренний ядерный слой. (6) Внутренний сетчатый слой.

(7) Слой ганглиозных клеток. (8) Слой нервных волокон.

2. Палочковые и колбочковые биполярные нейроны:

Колбочковые биполярные нейроны. Колбочковые биполярные нейроны бывают двух типов. ON-биполярные нейроны возбуждаются (деполяризуются) под действием света и тормозятся нейромедиатором, высвобождаемым в темноте. Они контактируют с ON-ганглиозными клетками. OFF-биполярные клетки реагируют противоположным образом и образуют контакты с OFF-ганглиозными клетками. Как правило, одна колбочка образует синапс с несколькими колбочковыми биполярными нейронами, однако в центральной ямке их отношение составляет 1:1; каждая контактирует только с одной ганглиозной клеткой.

Читайте также:  Отслойка сетчатки при диабете отек

Палочковые биполярные нейроны. Палочковые биполярные нейроны активируют ON- и OFF-колбочковые ганглиозные клетки косвенно, через амакриновые клетки Один палочковый биполярный нейрон образует синапсы с 15-30 палочками (дополнительные контакты возникают, если реакция распространяется в более центральные отделы).

3. Горизонтальные клетки. Дендриты горизонтальных клеток образуют контакты с фоторецепторами. От периферических ветвей дендритов берут начало аксоноподобные отростки, создающие тормозные контакты с биполярными нейронами.

Функция горизонтальных клеток — торможение биполярных нейронов кнаружи от непосредственной области возбуждения. Возбужденные биполярные клетки и ганглиозные клетки называют «включенными», а заторможенные — «выключенными».

Нервная цепочка сетчатки
Схема нервной цепочки сетчатки:
А—амакриновая клетка; К—колбочка; КБ—колбочковый биполярный нейрон;

ГК—ганглиозная клетка; Г—горизонтальная клетка; С—соединение (щелевидный контакт);

П—палочка; ПБ—палочковый биполярный нейрон.

4. Амакриновые клетки. Амакриновые клетки не имеют аксонов. Внешне они напоминают осьминога. Все дендриты отходят с одной стороны клетки. Дендритические ветви контактируют с биполярными нейронами и ганглиозными клетками.

Было выделено более десяти различных морфологических типов амакриновых клеток, а также несколько их нейромедиаторов: ацетилхолин, дофамин, серотонин. К возможным функциям этих клеток относят повышение контрастности и регистрацию движений. Амакриновые клетки преобразуют большое количество палочек из OFF в ON в соответствии с типом ганглиозной клетки.

5. Ганглиозные клетки. Ганглиозные клетки образуют синаптические контакты с их биполярными нейронами во внутреннем сетчатом слое. Типичный ответ ганглиозных клеток на возбуждение биполярных нейронов — «от центра к периферии». К центру рецептивного поля относят прямые контакты ганглиозных клеток с фоторецепторами; периферией рецептивного поля считают соединения с прилежащими фоторецепторами через горизонтальные клетки. ON-ганглиозная клетка возбуждается пучком света и тормозится окружающим кольцом света. Торможение осуществляют горизонтальные клетки. OFF-ганглиозная клетка действует по обратному принципу.

Кодирование цвета. Существует три типа колбочковых фоторецепторов, отличающихся спектральной чувствительностью.

Первый тип фоторецепторов чувствителен к красному цвету (их также называют L-колбочками, так как они регистрируют свет с большей длиной волны — Long), второй тип — к зеленому (М-колбочки), третий—к голубому (их также обозначают как S-колбочки, они составляют приблизительно 5-10 % общего количества колбочек). Чувствительность зависит от строения зрительного пигмента в каждом из типов клеток. Максимальная стимуляция каждого типа колбочек определяет длина волны, однако они отвечают на весьма широкий спектр длин волн, и все три типа колбочек частично дублируют друг друга. Определение цвета зависит не только от типа колбочек, а обусловлено сравнительной активностью различных типов колбочек на определенную длину волны. Группы клеток каждого типа контактируют с ON- или OFF-ганглиозными клетками (обработка цветовой информации начинается в сетчатке и продолжается в латеральном коленчатом ядре и коре полушарий).

Характерная реакция ганглиозных клеток — цветовое противодействие (один цвет возбуждает группу колбочек и их ганглиозную клетку, тогда как «противоположный» цвет тормозит их или их можно рассматривать как взаимно исключающие).

• Ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для красного, а ганглиозные клетки, «включенные» для красного цвета, «выключены» для зеленого.

• Ганглиозные клетки, «включенные» для синего цвета, «выключены» для желтого, ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для желтого.

• Наконец, аналогичный механизм справедлив для черного и белого цветов, а также для яркости изображения.

Кодирование черного и белого. Белый цвет — это сочетание зеленого, красного и синего. При ярком освещении его кодируют три типа колбочек, взаимодействующих с общей ганглиозной клеткой. ON- и OFF-ганглиозные клетки участвуют в процессах как черно-белого, так и цветового зрения.

В глубоких сумерках, например при свете звезд, активны только палочковые фоторецепторы, и объекты видны в различных оттенках серого. Палочки подчиняются тем же правилам, что и колбочки и обладают центрально-периферическим антагонизмом в отношении белого и черного, а также контактируют как с ON-, так и с OFF-ганглиозными клетками.

Большинство ганглиозных клеток палочек и колбочек — мелкие (Р-клетки — от parvocellular), имеют небольшие рецепторные поля и отвечают за определение формы и цвета. Лишь малая их часть — крупные клетки (М-клетки — от magnocellular), имеют большие рецепторные поля и отвечают за регистрацию движений в поле зрения.

6. Специализация центральной ямки. Относительная плотность колбочек прогрессивно увеличивается, а их размер прогрессивно уменьшается от края центральной ямки к ее центру. Центральная треть центральной ямки (ямочка, foveola) имеет ширину лишь немного более 100 нм и содержит только карликовые колбочки. Для всех колбочек центральной ямки и карликовых колбочек особенно характерны две специфические анатомические особенности, позволяющие передавать максимальное количество информации о форме и цветовых качествах объекта при его внимательном изучении. Во-первых, более поверхностные слои сетчатки отклоняются кнаружи от центра, а их отростки имеют избыточную длину. Это приводит к тому, что наружные две трети ямочки становятся частично перекрытыми телами биполярных клеток, а внутренняя треть ничем не закрыта; свет, отраженный от объекта попадает на колбочки ямочки без какого-либо рассеяния.

Во-вторых, наличие синаптических контактов в отношении 1:1 между карликовыми колбочками и их биполярными нейронами, а также между ними и ганглиозными клетками улучшает точность центральной передачи. Кнаружи от ямочки степень конвергенции «колбочка => биполярная клетка => ганглиозная клетка» прогрессивно увеличивается.

Диск зрительного нерва и центральная ямка
(А) Горизонтальный срез правого глазного яблока на уровне диска зрительного нерва и центральной ямки.

(Б) Увеличенное изображение рисунка А. Возвратные аксоны огибают центральную ямку, как показано на рисунке В.

(В) Поверхность центральной ямки и окружающей сетчатки. Колбочки расположены с интервалами, чтобы показать «цепочечную» последовательность нейронов.

СБК — слой биполярных клеток; СГК — слой ганглиозных клеток.

— Также рекомендуем «Зрительные проводящие пути: зрительный нерв, зрительный путь, коленчато-шпорный путь, первичная зрительная кора»

Редактор: Искандер Милевски. Дата публикации: 21.11.2018

Источник