Количество оттенков сетчатка глаза

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.

Запрос «Ретина» перенаправляется сюда; о названии особого вида ЖК-дисплеев см. Retina.

Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Строение[править | править код]

Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.

Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:

  • пигментного,
  • фотосенсорного,
  • наружной пограничной мембраны,
  • наружного зернистого слоя,
  • наружного сплетениевидного слоя,
  • внутреннего зернистого слоя,
  • внутреннего сплетениевидного слоя,
  • ганглионарных клеток,
  • слоя волокон зрительного нерва,
  • внутренней пограничной мембраны.

Строение сетчатки человека[править | править код]

Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.

Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.

Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.

диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.

На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.

Микроскопическое строение[править | править код]

Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено

См. Пигментный эпителий сетчатки

В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.

Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.

Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).

Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.

Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

Читайте также:  Ангиопатия сетчатки по типу всд это

Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.

Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

Заболевания[править | править код]

Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:

  • Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
  • Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
  • Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
  • Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
  • Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
  • И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
  • Ретинобластома — злокачественная опухоль сетчатки.
  • Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
  • Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.

Литература[править | править код]

  • Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.

Примечание[править | править код]

Ссылки[править | править код]

  • Строение сетчатки. // Проект «Eyes for me».

Источник

Правообладатель иллюстрации
SPL

Корреспондент

BBC Future рассказывает об удивительных свойствах нашего зрения — от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам — световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

(Другие статьи сайта BBC Future на русском языке)

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. «У любых видимых нами объектов есть определенный «порог», ниже которого мы перестаем их различать», — говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета — пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации
SPL

Image caption

Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении

Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток — палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении — например, ночью (ночное зрение).

Содержащиеся в светочувствительных клетках рецепторы — опсины — поглощают электромагнитную энергию фотонов и производят электрические импульсы. Эти сигналы по оптическому нерву попадают в мозг, который и создает цветную картину происходящего вокруг нас.

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа — за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. «Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины», — говорит Лэнди.

Читайте также:  Складка в сетчатке глаза

Правообладатель иллюстрации
Thinkstock

Image caption

Не весь спектр полезен для наших глаз…

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем — спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией — отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) — способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

«Точно подсчитать, сколько мы видим цветов, не представляется возможным, — говорит Кимберли Джемесон, научный сотрудник Калифорнийского университета в Ирвайне. – Некоторые видят больше, некоторые — меньше».

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек — они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации
SPL

Image caption

После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. «Человек способен увидеть один-единственный фотон, — говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла».

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

«Единственное, что нужно глазу, чтобы что-то увидеть, — это определенное количество света, излученного или отраженного на него объектом, — говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов».

Читайте также:  Продукты питания для сетчатки глаз

Правообладатель иллюстрации
Thinkstock

Image caption

Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации
Thinkstock

Image caption

Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора — в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации
SPL

Image caption

Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов — таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. «По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз», — говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.

Правообладатель иллюстрации
Thinkstock

Image caption

В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

Прочитать

оригинал этой статьи на английском языке можно на сайте

BBC Future.

Источник