Колбочки в сетчатке животных
Сечение слоя сетчатки глаза
Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро;
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент.
Ко́лбочки (англ. cone) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.
Колбочки чувствительны к свету благодаря наличию в них специфического пигмента — йодопсина. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).
В литературе представлены различные оценки, хотя и близкие числа колбочек в сетчатке человеческого глаза у взрослого человека со 100 % зрением. Так в[1] указывается число от шести до семи миллионов колбочек, большинство из которых содержится в жёлтом пятне.
Обычно указываемое количество в шесть миллионов колбочек в человеческом глазу было найдено Остербергом в 1935 году[2]. Учебник Ойстера (1999)[3] цитирует работу Curcio et al. (1990), с числами около 4,5 миллионов колбочек и 90 миллионов палочек в сетчатке человека[4].
Размеры колбочек: длина около 50 мкм, диаметр — от 1 до 4 мкм.
Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.
Строение фоторецепторов[править | править код]
Колбочки и палочки сходны по строению и состоят из четырех участков.
В строении колбочки принято различать (см. рисунок):
- наружный сегмент (содержит мембранные полудиски),
- связующий отдел (перетяжка),
- внутренний сегмент (содержит митохондрии),
- синаптическую область.
Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё. Они представляют собой складки плазматической мембраны, покрытые светочувствительным пигментом. Обращённая к свету, наружная часть столбика из полудисков, постоянно обновляется — за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора, происходит примерно за 10 дней. В колбочках мембранных полудисков меньше, чем дисков в палочке, и их количество порядка нескольких сотен. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.
Внутренний сегмент это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.
В синаптической области клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.
Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении[5].
Цветное зрение[править | править код]
Нормализованные графики спектральной зависимости чувствительности к свету у человеческих клеток-колбочек различных видов — коротковолновых, средневолновых и длинноволновых (синий, зелёный и красный графики) и клеток-палочек (чёрный график). NB: ось длин волны на данном графике линейная.
Те же графики, но без нормализации светочувствительности
По чувствительности к свету с различными длинами волн различают три вида колбочек. Колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение.
Название | максимум | Название цвета |
---|---|---|
S | 443 нм | синий |
M | 544 нм | зелёный |
L | 570 нм | красный |
Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[6]
Пигмент, чувствительный к фиолетово-синей области спектра, названный цианолаб, у человека кодируется геном OPN1SW[7][8][9].
В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.
Пространственное разрешение глаза человека различается для разных цветов: На белом фоне ориентацию жёлтых линий определить сложно, поскольку жёлтый отличается от белого синей (коротковолновой) компонентой
Колбочки трёх видов распределены в сетчатке неравномерно[10]. Преобладают длинно- и средневолновые, коротковолновых колбочек гораздо меньше и они (как и палочки) отсутствуют в центральной ямке. Такая асимметрия объясняется цветовой аберрацией — изображение хорошо сфокусировано на сетчатке только в длинноволновой части спектра, то есть если количество «синих» колбочек и увеличить, чётче изображение не станет[11].
Примечания[править | править код]
- ↑ The Rods and Cones of the Human Eye.
- ↑ Osterberg, G. Topography of the layer of rods and cones in the human retina (англ.) // Acta Ophthalmologica (англ.)русск. : journal. — Wiley-Liss, 1935. — Vol. Suppl. 13, no. 6. — P. 1—102.
- ↑ Oyster, C. W. The human eye: structure and function (неопр.). — Sinauer Associates (англ.)русск., 1999.
- ↑ Curcio, CA.; Sloan, KR.; Kalina, RE.; Hendrickson, AE. Human photoreceptor topography (англ.) // J Comp Neurol (англ.)русск. : journal. — 1990. — February (vol. 292, no. 4). — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.
- ↑
Н. Грин, У.Стаут, Д.Тейлор. Биология: в 3-х т. — Пер.с англ./ под.ред. Р.Сопера. — М.: Мир, 1993. — Т. 2. — С. 280—281. - ↑
Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с. - ↑ Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments (англ.) // Science : journal. — 1986. — April (vol. 232, no. 4747). — P. 193—202. — PMID 2937147.
- ↑ Fitzgibbon J., Appukuttan B., Gayther S., Wells D., Delhanty J., Hunt D. M. Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32 (англ.) // Hum Genet : journal. — 1994. — February (vol. 93, no. 1). — P. 79—80. — PMID 8270261.
- ↑ Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan).
- ↑ Rods & Cones см. раздел The Receptor Mosaic.
- ↑ Brian A. Wandell, Foundations of Vision, Chapter 3: The Photoreceptor Mosaic (недоступная ссылка). Архивировано 5 марта 2016 года.
Источник
→ Сетчатка
Ко́лбочки — (англ. cone — конус) один из типов экстерорецепторов (фоторецепторов) периферических отростков светочувствительных нервных клеток сетчатки глаза. Названы колбочками из-за формы, подобной конической лабораторной колбе.
Колбочки — группа рецепторов, состоящая из различных типов специализированных нервных клеток, воспринимающих и преобразующих световые раздражения в нервное возбуждение в биоэлектрические сигналы, идущие в зрительные отделы головного мозга.
Колбочки чувствительны к свету в широком диапазоне. В сумраке, когда освещённость недостаточна для работы колбочек, у человека работают только рецепторы-палочки. Ночью люди становятся «цветнослепыми» — мир воспринимается ими монохромным.
Светочувствительность рецепторов связывают с наличием в них специфического пигмента — йодопсина; с цис-транс переходом ретиналя и др. механизмами. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).
В сетчатке глаза у взрослого человека насчитывается около 6 млн.[1] колбочек. Размеры их следующие: длина около 50 мкм, диаметр — от 1 до 4 мкм.
Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.
Сетчатка — сложная, слоистая структура с несколькими слоями нейронов, связанных синапсами. Одиночные нейроны, которые являются непосредственно светочувствительными — ячейки фоторецепторов колбочек и палочек.
[править] Строение фоторецепторов — колбочек
Колбочки у различных видов животных имеют разнообразное строение, у отдельных видов можно обнаружить различное строение колбочек.
[править] Колбочки человека
[править] Морфология
Строение колбочки (сетчатка)
Колбочки и палочки сходны по строению и состоят из четырех участков.
- 1 — НАРУЖНИЙ СЕГМЕНТ (содержит мембранные диски с йодопсином),
- 2 — СВЯЗУЮЩИЙ ОТДЕЛ (перетяжка),
- 3 — ВНУТРЕННИЙ СЕГМЕНТ (содержит митохондрии),
- 4 — СИНАПТИЧЕСКАЯ ОБЛАСТЬ
Наружный сегмент колбочки заполнен мембранными полудисками, образованными плазматической мембраной, отделившимися от нее. Они представляют собой складки плазматической мембраны. В колбочках мембранных полудисков значительно меньше, чем дисков в палочке, и их количество составляет примерно нескольких сотен. Каждый диск образован двумя соединёнными по краям мембранами толщиной порядка 50 — 75 Ангстрем, разделённых промежутком — около 50 Ангстрем.[2].[3].
В районе связующего отдела (перетяжки) наружний сегмент почти полностью отделен от внутреннего впячиванием наружней мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 пар двойных нитей (фибрилл). Они отходят в соединительной ресничке от одной из двух центриолей (базальное тельце), которые лежат рядом перпендикулярно друг другу. Нити, соединяющие реснички, проходят от внутреннего сегмента до верхушки наружнего сегмента.[4].
Во внутреннем сегменте имеется скопление радиально ориентированных и плотно упакованных митохондрий. При освещении колбочки митохондрии набухают и, вероятно, при этом в них повышается активность окислительных ферментов. Это область активного метаболизма. Митохондрии и полирибосомы, поставляют энергию для обеспечения процессов световосприятия, при этом синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.[5].[6].
В синаптической области с нервными окончаниями колбочки подходят и вдаются в неё дендриды биполярных и горизонтальных клеток сетчатки. Кроме того, описаны контакты между рецепторами (палочками и колбочками) сетчатки. В пресинаптических окончаниях обнаружено большое количество синаптических пузырьков (везикул), которые содержат медиатор. Число и размер этих пузырьков, по-видимому, меняются при изменении освещения.[7].[8].[9].
Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.
Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения.
Горизонтальные и амакриловые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.[10],[11]
[править] Колбочки рептилий и птиц
Колбочки в сетчатке глаза птиц, земноводных и др. позвоночных отличаются своим строением от колбочек, находящихся в сетчатке глаза приматов.
В частности, у птиц, рыб, черепах в строении колбочек присутствуют «масляные капельки». Кроме того в их сетчатках различают как «обычные» колбочки, так и так называемые «двойные» колбочки.
[править] Цветное зрение человека
Кривые спектров поглощения пигментов содержащихся в колбочках и палочках сетчатки глаза человека. Спектры коротких (S), средних (М) и длинноволновых (L) пигментов и спектр пигмента палочки при слабом (сумеречном) освещении (R). NB: ось длин волн на данном графике нелинейна
Кривые спектральной чувствительности колбочковых приёмников (фотопигментов) нормального трихромата, определённые колориметрическим методом (А), и спектры поглощения, измеренные в наружных сегментах одиночных колбочек макаки (Б). (По. Marks et al., 1964). Сплошные кривые на А представляют результат расчёта кривых спектральной чувствительности по кривым сложения нормального трихромата (Бонгард, Смирнов, 1955); кружки — результаты опытов с дихроматами[12] .
Согласно преобладающей в настоящее время трёхкомпонентной теории зрения найденные три пика поглощения в видимой области спектра тканями сетчатки обуславливаются наличием трёх типов зрительных пигментов и, соответственно существуют три вида колбочек, чувствительных к разным длинам волн света (цветам). Это колбочки S-типа, чувствительные в синей (S от англ. Short — коротковолновый спектр), M-типа — в зеленой (M от англ. Medium — средневолновый), и L-типа — красной (L от англ. Long — длинноволновый) частях спектра. При этом исходят из предположения, что в каждом типе колбочек содержится только один из трёх пигментов. [13]
В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий зеленой (максимум поглощения около 540 нм.), а второй — красной (максимум поглощения около 570 нм.) частям спектра. Третий пигмент, чувствительный к фиолетово-синей области спектра, получил название цианолаб.
Существует критика указанной концепции: последователями нелинейной теории зрения существование цианолаба отрицается со ссылкой на работу 1964 года[14], и они утверждают, что найти какую-либо разницу между колбочками в сетчатке глаза не удалось (см. также Колбочки в нелинейной теории зрения).
Рис. K. Прохождение волн синего, зелёного, красного цветов во внешней мембране колбочки.[15]
С учётом современных взглядов биофизики, биохимии пересмотрены основы прежнего сложившегося процесса цветного зрения с разных точек зрения:
- С точки зрения биологической, в области цветного зрения начиная с 1966 по 2009 годы (Труды доктора Р.Е.Марка и его лаборатории)[16] с основными экспериментальными данными исследований живой клетки, на срезах сетчатки установлена работа колбочек (LMS (цветное зрение)|S,M,L) в блоке RGB и палочек. Установлено, что в условиях дневного освещения (цветного зрения) работают колбочки и в период сумеречного и ночного освещения (не цветного) работают палочки, в режиме изолированном от колбочек. Работа фоторецепторов связана с видоизменяющимися, разновидностями фотопигментов на базе белков опсинов (См. Ретиномоторная реакция фоторецепторов сетчатки глаза) — это конопсин у колбочек, родопсин — у палочек.
- С точки зрения чисто физической на базе труда (2011 года) учёного физика[17] Джеральда К. Хата предложено рассматривать взаимодействия света с внешними долями мембран фоторецепторов сетчатки глаза на основе первичного взаимодействия со светом (рецепторное) на уровне «нано-антен». По данным доктора физика Джона Медейроса[18] рассмотрена работа внешних долей мембраны колбочек и палочек аналогично работе волноводов конической и цилиндрической формы в среде прозрачного тела глаза (жидкая среда).
В итоге, физики К.Хат и Джон Медейрос пришли к общепринятому принципу трихроматизма. (См. Пересмотр традиционных взглядов на зрительный процесс физика К. Хата, Работа внешних мембран колбочек и палочек сетчатки глаза как волновод). При этом рассмотрев колбочку как биологический волновод конической формы получены данные прохождения лучей в волнлводе, связанное с величиной поперечного сечения электромагнитного колебания. Например, синий цвет несут волны с сечением ≈2-4 нм, зелёные — ≈4-6 нм, красные — ≈6-7 нм и более. При этом каждая из волн останавливается в своём сечении конусного волновода — внешней мембраны колбочки. (См. рис. K). Откуда можно утверждать, что каждая колбочка воспринимая оппонентно отобранные падающие на неё лучи в соответствующем сечении вырабатывает фотопигмент опсин нужного цвета.
[править] См. также
- Палочки (сетчатка)
- Экстерорецепторы
- Теории цветового зрения
- Нелинейная теория зрения
- Трёхкомпонентная теория цветного зрения
- Трихроматизм (цветное зрение)
[править] Источники
- ↑ G. Osterberg (1935). «Topography of the layer of rods and cones in the human retina, » Acta Ophthalmol., Suppl. 13:6, pp. 1-102.
- ↑ Wolken J. J. 1966. Vision, Thomas C. C.
- ↑ De Robertis E. I., A. Lasansky. 1961. In^ The strukture of the Eye. New York — London : 29
- ↑ Wald G., P. K. Brown, J. R/ Gibbons. 1963. Jur. Opt. Soc. Amer., 53 : 20
- ↑ Островский М. А. 1961. Жур. Общей биол., 22 : 471
- ↑ Лукашевич Т. П. 1962. Доклад АН СССР, 145 : 669
- ↑ Островский М. А. 1961. Жур. Общей биол., 22 : 474
- ↑ Вальцев В. Б. 1965. Жур. Высш. Нервн. Деят., 5 : 934
- ↑ Вальцев В. Б. 1966. Жур. Высш. Нервн. Деят., 16 : 535
- ↑ Н. Грин, У.Стаут, Д.Тейлор, Биология: в 3-х т, пер.с англ./ под.ред. Р.Сопера, Мир, т.2, 280—281
- ↑ Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo JF 3rd, Czeisler CA, Foster RG, Moseley MJ, Lockley SW. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007 Dec 18;17(24):2122-8 Abstract.
- ↑ Нюберг Н. Д., Юстова Е. Н., 1955. Тр. Гос. оптич. инст., 24 : 33.
- ↑ Д. Хьюбел Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
- ↑ W. B. Marks, W. U. Dobelle, E. F. Mac Nichol Visual Pigments of Single Primate Cones = «Science», v 143, 1964, p 1181. — Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218: «Science», v 143, 1964, p 1181, 1964. — Т. v 143. — С. p 1181.
- ↑ https://www.conesandcolor.net/_F_CSM.htm
- ↑ https://prometheus.med.utah.edu/~marclab/Marc_Duanes_FNAR_20080815_layout.pdf
- ↑ https://www.ghuth.com/curriculum-vitae/
- ↑ https://www.conesandcolor.net/home.htm
Источник
Ко́лбочки — (англ. cone — конус) один из типов экстерорецепторов (фоторецепторов) периферических отростков светочувствительных нервных клеток сетчатки глаза. Названы колбочками из-за формы, подобной конической лабораторной колбе.
Колбочки — группа рецепторов, состоящая из различных типов специализированных нервных клеток, воспринимающих и преобразующих световые раздражения в нервное возбуждение в биоэлектрические сигналы, идущие в зрительные отделы головного мозга.
Колбочки чувствительны к свету в широком диапазоне. В сумраке, когда освещённость недостаточна для работы колбочек, у человека работают только рецепторы-палочки. Ночью мы становимся «цветнослепыми» — мир воспринимается монохромным.
Светочувствительность рецепторов связывают с наличием в них специфического пигмента — йодопсина; с цис-транс переходом ретиналя и др. механизмами. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).
В сетчатке глаза у взрослого человека насчитывается около 6 млн.[1] колбочек. Размеры их очень невелики: длина около 50 мкм, диаметр — от 1 до 4 мкм.
Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.
Cетчатка сложная, слоистая структура с несколькими слоями нейронов, связанных синапсами. Одиночные нейроны, которые являются непосредственно светочувствительными — ячейки фоторецепторов колбочек и палочек.
Строение фоторецепторов — колбочекПравить
Колбочки у различных видов животных имеют разнообразное строение, у отдельных видов можно обнаружить различное строение колбочек.
Колбочки человекаПравить
Строение колбочки (сетчатка глаза)
Колбочки и палочки сходны по строению и состоят из четырех участков.
- 1 — НАРУЖНИЙ СЕГМЕНТ (содержит мембранные диски с йодопсином),
- 2 — СВЯЗУЮЩИЙ ОТДЕЛ (перетяжка),
- 3 — ВНУТРЕННИЙ СЕГМЕНТ (содержит митохондрии),
- 4 — СИНАПТИЧЕСКАЯ ОБЛАСТЬ
Наружний сегмент колбочки заполнен мембранными полудисками, образованными плазматической мембраной, отделившимися от нее. Они представляют собой складки плазматической мембраны. В колбочках мембранных полудисков значительно меньше, чем дисков в палочке, и их количество составляет примерно нескольких сотен.
В районе связующего отдела (перетяжки) наружний сегмент почти полностью отделен от внутреннего впячиванием наружней мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.
Внутренний сегмент — это область активного метаболизма. Она заполнена митохондриями, доставляющими энергию для процессов зрения, а также полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.
В синаптической области клетка образует синапсы с биполярными клетками.
Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.
Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения.
Горизонтальные и амакриловые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.[2],[3]
Колбочки рептилий и птицПравить
Колбочки в сетчатке глаза птиц, земноводных и др. позвоночных отличаются своим строением от колбочек, находящихся в сетчатке глаза приматов.
В частности, у птиц, рыб, черепах в строении колбочек присутствуют «масляные капельки». Кроме того в их сетчатках различают как «обычные» колбочки, так и так называемые «двойные» колбочки.
Цветное зрение Править
Кривые спектров поглощения пигментов содержащихся в колбочках и палочках сетчатки глаза человека. Спектры коротких (S), средних (М) и длинноволновых (L) пигментов и спектр пигмента палочки при слабом (сумеречном) освещении (R). NB: ось длинн волны на данном графике нелинейна.
Кривые спектральной чувствительности колбочковых приёмников нормального трихромата, определённые колориметрическим методом (А), и спектры поглощения, измеренные в наружных сегментах одиночных колбочек макаки (Б). (По. Marks et al., 1964). Сплошные кривые на А представляют результат расчёта кривых спектральной чувствительности по кривым сложения нормального трихромата (Бонгард, Смирнов, 1955); кружки — результаты опытов с дихроматами [4] .
По мнению сторонников трёхкомпонентной теории зрения, раз найденны три пика поглощения в видимой области тканями сетчатки, то это должно обуславливаться наличием трёх типов зрительных пигментов и как они считают, должны существовать три вида колбочек, чувствительных к разным длинам волн света (цветам). Предполагается наличие колбочек S-типа чувствительных в синей (S от англ. Short — коротковолновый спектр), M-типа — в зеленой (M от англ. Medium — средневолновый), и L-типа — красной (L от англ. Long — длинноволновый) частях спектра. При этом исходят из предположения, что в каждом типе колбочек содержится только один из трёх пигментов.
[5]
На сегодняшний день эти предположения подтвердить пока не удалось.
В настоящее время известно, что светочувствительный пигмент йодопсин находящийся в колбочках глаза, включает в себя такие пигменты, как хлоролаб (максимум около 540 нм.) и эритролаб (максимум около 570 нм.); первый из них поглощает лучи, соответствующие жёлто-зеленой, а второй жёлто-красной частям спектра. Их максимумы поглощения расположены рядом. Это не соответствуют привычным «основным» цветам и не согласуется с принципами трёхкомпанентной модели.
Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее названный цианолаб, также на сегодняшний день не найден и не исследован.
Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке могут одновременно находится пигменты хлоролаб и эритролаб.
[6]
По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.
Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут (почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки).
[7]
Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми. Р. Ф. Фейнман пишет, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть». [8]
На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом так и не удалось.
В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.
Смотри также Править
- Палочки (сетчатка глаза)
- Экстерорецепторы
- Нелинейная теория зрения
Ссылки Править
- ↑ G. Osterberg (1935). «Topography of the layer of rods and cones in the human retina, » Acta Ophthalmol., Suppl. 13:6, pp. 1-102.
- ↑ Н. Грин, У.Стаут, Д.Тейлор, Биология: в 3-х т, пер.с англ./ под.ред. Р.Сопера, Мир, т.2, 280—281
- ↑ Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo JF 3rd, Czeisler CA, Foster RG, Moseley MJ, Lockley SW. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007 Dec 18;17(24):2122-8 Abstract
- ↑ Нюберг Н. Д., Юстова Е. Н., 1955. Тр. Гос. оптич. инст., 24 : 33.
- ↑
Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с. (см. ISBN ) - ↑
W. B. Marks, W. U. Dobelle, E. F. Mac Nichol. Visual Pigments of Single Primate Cones = «Science», v 143, 1964, p 1181. — Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218: «Science», v 143, 1964, p 1181, 1964. — Т. v 143. — С. p 1181. (см. ISBN ) - ↑
С. Ременко. Цвет и зрение / под ред. И. П. Молодян, Ф. И. Гыцу. — Кишинёв: Картя Молдавеняска, 1982. — 160 с. с. — 10 000 экз. (см. ISBN ) - ↑ Ричард Филлипс Фейнман. Фейнмановские Лекции по Физике, том № 3, гл. 35 (Цветовое зрение), стр. 157.
- REDIRECT Шаблон:Глаз и Зрение
Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA
, если не указано иное.
Источник