Какой пигмент содержится в палочках сетчатки
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 июля 2018;
проверки требуют 9 правок.
У этого термина существуют и другие значения, см. Палочки.
Сечение слоя сетчатки глаза
Строение палочки сетчатки глаза: 1 — наружный сегмент (содержит мембранные диски), 2 — связующий отдел (ресничка), 3 — внутренний отдел (содержит митохондрии), 4 — основание с нервными окончаниями.
Па́лочки (англ. rod cells) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою цилиндрическую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение. Вторым типом фоторецепторов являются колбочки.
В среднем сетчатка глаза человека содержит около 92 миллионов палочек.[1]
Размеры палочек: длина 0,06 мм, диаметр 0,002 мм.
Палочки чувствительны к свету благодаря наличию в них специфического пигмента — родопсина (или зрительный пурпур). Под действием света происходит ряд очень быстрых превращений и обесцвечивание зрительного пигмента. Чувствительность палочки достаточна, чтобы зарегистрировать попадание даже 2-3 фотонов.
Плотность размещения палочек на различных участках сетчатки глаза неравномерна и может составлять от 20 до 200 тысяч на квадратный миллиметр. Причём на периферии сетчатки их плотность выше, чем к её середине, что определяет их участие в ночном и периферийном зрении. В центре сетчатки, в центральной ямке (жёлтом пятне), палочки практически отсутствуют.
Строение фоторецепторов[править | править код]
Палочки и колбочки сходны по строению и состоят из четырех отделов.
В строении палочки принято различать (см. рисунок):
- Наружный сегмент (содержит мембранные диски с родопсином),
- Связующий отдел (ресничка),
- Внутренний сегмент (содержит митохондрии),
- Область с нервными окончаниями.
В наружном сегменте палочки находится столбик содержащий большое количество мембранных дисков (около тысячи). Мембраны дисков содержат множество молекул светочувствительного пигмента родопсина. Диски представляют собой уплощенные мембранные мешочки, уложенные в виде стопки. Обращённая к свету, наружная часть столбика из дисков, постоянно обновляется, за счет фагоцитоза «засвеченных» дисков клетками пигментного эпителия, и постоянного образования новых дисков, в теле фоторецептора. Диски в колбочке постоянно обновляются (до сотни дисков в сутки). На полное обновление всех дисков фоторецептора требуется около 10 дней.
Внутренний сегмент — это область активного метаболизма, она заполнена митохондриями, поставляющими энергию для обеспечения процессов световосприятия, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке палочки располагается ядро.
К одному интернейрону, собирающему сигнал c сетчатки, как правило, подсоединяются несколько палочек, что дополнительно увеличивает чувствительность глаза (конвергенция). Такое объединение палочек в группы делает периферийное зрение очень чувствительным к движениям и отвечает за феноменальные способности отдельных индивидов к зрительному восприятию событий лежащих вне угла их зрения.
Палочки обладают интересной особенностью. В связи с тем, что все палочки содержат один и тот же светочувствительный пигмент — родопсин, их спектральная характеристика сильно зависит от уровня освещения. При слабом освещении, максимум поглощения родопсина составляет около 500 нм. (спектр сумеречного неба), при этом палочки ответственны за ночное зрение, когда цвета предметов неразличимы. При высоком уровне освещения, родопсин выцветает, его чувствительность падает, и максимум поглощения смещается в синюю область, что позволяет глазу, при достаточном освещении, использовать палочки как приёмник коротковолновой (синей) части спектра[2]. Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синюю часть спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить эту закономерность до сих пор не могут (почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки).
Таким образом, при ярком свете, палочки совместно с колбочками (которые чувствительны к жёлто-зелёной и жёлто-красной частям спектра)[3] позволяют глазу различать и цвета окружающего нас мира.
Цветное зрение[править | править код]
Нормализованные графики чувствительности человеческих клеток-колбочек различных видов (К, С, Д) и клеток-палочек (П) к различным частям спектра. NB: ось длин волны на данном графике логарифмическая.
Палочки чувствительны в изумрудно-зеленой части спектра (максимум — 498 нм). В остальных частях спектра чувствительны колбочки разных видов. Наличие палочек и разных видов колбочек даёт человеку цветное зрение.
Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[4]
В ночное время, когда поток электромагнитных волн недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.
См. также[править | править код]
- Анкирин 3
- Колбочки
Примечания[править | править код]
- ↑ Curcio, C. A.; Sloan, K. R. et al. Human photoreceptor topography (англ.) // The Journal of Comparative Neurology (англ.)русск. : journal. — 1990. — Vol. 292, no. 4. — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.
- ↑ С. Д. Ременко, «Цвет и зрение», «Картеа Молдовеняскэ», Кишинёв, 1982 г.
- ↑ W. B. Marks, W. U. Dobelle, E. F. Mac Nichol. «Science», v 143, 1964, p 1181.
- ↑
Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
Источник
Сечение слоя сетчатки глаза
Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро;
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент.
Ко́лбочки (англ. cone) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.
Колбочки чувствительны к свету благодаря наличию в них специфического пигмента — йодопсина. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).
В литературе представлены различные оценки, хотя и близкие числа колбочек в сетчатке человеческого глаза у взрослого человека со 100 % зрением. Так в[1] указывается число от шести до семи миллионов колбочек, большинство из которых содержится в жёлтом пятне.
Обычно указываемое количество в шесть миллионов колбочек в человеческом глазу было найдено Остербергом в 1935 году[2]. Учебник Ойстера (1999)[3] цитирует работу Curcio et al. (1990), с числами около 4,5 миллионов колбочек и 90 миллионов палочек в сетчатке человека[4].
Размеры колбочек: длина около 50 мкм, диаметр — от 1 до 4 мкм.
Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.
Строение фоторецепторов[править | править код]
Колбочки и палочки сходны по строению и состоят из четырех участков.
В строении колбочки принято различать (см. рисунок):
- наружный сегмент (содержит мембранные полудиски),
- связующий отдел (перетяжка),
- внутренний сегмент (содержит митохондрии),
- синаптическую область.
Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё. Они представляют собой складки плазматической мембраны, покрытые светочувствительным пигментом. Обращённая к свету, наружная часть столбика из полудисков, постоянно обновляется — за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора, происходит примерно за 10 дней. В колбочках мембранных полудисков меньше, чем дисков в палочке, и их количество порядка нескольких сотен. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.
Внутренний сегмент это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.
В синаптической области клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.
Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении[5].
Цветное зрение[править | править код]
Нормализованные графики спектральной зависимости чувствительности к свету у человеческих клеток-колбочек различных видов — коротковолновых, средневолновых и длинноволновых (синий, зелёный и красный графики) и клеток-палочек (чёрный график). NB: ось длин волны на данном графике линейная.
Те же графики, но без нормализации светочувствительности
По чувствительности к свету с различными длинами волн различают три вида колбочек. Колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение.
Название | максимум | Название цвета |
---|---|---|
S | 443 нм | синий |
M | 544 нм | зелёный |
L | 570 нм | красный |
Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[6]
Пигмент, чувствительный к фиолетово-синей области спектра, названный цианолаб, у человека кодируется геном OPN1SW[7][8][9].
В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.
Пространственное разрешение глаза человека различается для разных цветов: На белом фоне ориентацию жёлтых линий определить сложно, поскольку жёлтый отличается от белого синей (коротковолновой) компонентой
Колбочки трёх видов распределены в сетчатке неравномерно[10]. Преобладают длинно- и средневолновые, коротковолновых колбочек гораздо меньше и они (как и палочки) отсутствуют в центральной ямке. Такая асимметрия объясняется цветовой аберрацией — изображение хорошо сфокусировано на сетчатке только в длинноволновой части спектра, то есть если количество «синих» колбочек и увеличить, чётче изображение не станет[11].
Примечания[править | править код]
- ↑ The Rods and Cones of the Human Eye.
- ↑ Osterberg, G. Topography of the layer of rods and cones in the human retina (англ.) // Acta Ophthalmologica (англ.)русск. : journal. — Wiley-Liss, 1935. — Vol. Suppl. 13, no. 6. — P. 1—102.
- ↑ Oyster, C. W. The human eye: structure and function (неопр.). — Sinauer Associates (англ.)русск., 1999.
- ↑ Curcio, CA.; Sloan, KR.; Kalina, RE.; Hendrickson, AE. Human photoreceptor topography (англ.) // J Comp Neurol (англ.)русск. : journal. — 1990. — February (vol. 292, no. 4). — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.
- ↑
Н. Грин, У.Стаут, Д.Тейлор. Биология: в 3-х т. — Пер.с англ./ под.ред. Р.Сопера. — М.: Мир, 1993. — Т. 2. — С. 280—281. - ↑
Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с. - ↑ Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments (англ.) // Science : journal. — 1986. — April (vol. 232, no. 4747). — P. 193—202. — PMID 2937147.
- ↑ Fitzgibbon J., Appukuttan B., Gayther S., Wells D., Delhanty J., Hunt D. M. Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32 (англ.) // Hum Genet : journal. — 1994. — February (vol. 93, no. 1). — P. 79—80. — PMID 8270261.
- ↑ Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan).
- ↑ Rods & Cones см. раздел The Receptor Mosaic.
- ↑ Brian A. Wandell, Foundations of Vision, Chapter 3: The Photoreceptor Mosaic (недоступная ссылка). Архивировано 5 марта 2016 года.
Источник
Зрительная фототрансдукция представляет собой комплекс процессов, который отвечает за изменение (фототрансформацию) пигментов и последующую их регенерацию. Необходимо это для передачи информации из внешнего мира к нейронам. Благодаря биохимическим процессам, при влиянии света с различной длиной волны, возникают структурные изменения в строении пигментов, которые находятся в бислойном липидном участке мембран внешней доли фоторецептора.
Изменения в фоторецепторах
Фоторецепторы всех позвоночных животных, включая человека, могут реагировать на световые лучи путем изменения фотопигментов, которые располагаются в бислойных мембранах в области внешней доли колбочек и палочек.
Сам зрительный пигмент представляет собой белок (опсин), который является производным витамина А. Сам бета-каротин содержится в пищевых продуктах, а также синтезируется в клетказ сетчатки (фоторецептоный слой). Эти опсины ил хромофоры в связанном состоянии локализуются в глубине биполярных дисков в зоне внешних долей фоторецепторов.
Около половины опсинов приходится на бислойный липидный слой, который связан снаружи короткими петлями белка. Каждая молекула родопсина имеет в своем составе семь трасмембранных участков, которые окружают хромофор в бислое. Хромофор располагается горизонтально в мембране фоторецептора. Внешний диск мембранного участка имеет большое количество зрительных молекул пигмента. После того, как был поглощен фотон света, вещество пигмента переходит из одной изоформы в другую. В результате этого молекула претерпевает конформационные изменения, а структура рецептора восстанавливается. При этом метародопсин активирует G-белок, что запускает каскад биохимических реакций.
Фотоны света воздействуют на зрительный пигмент, что приводит к активации каскада реакций: фотон – родопсин – метародопсин – трансдуцин – фермент, который гидролизует цГМФ.В результате этого каскада формируется закрывающаяся мембрана на внешнем рецепторе, которая связана с цГМФ и отвечает за работу катионного канала.
В темноте через открытые каналы проникают катионы (в основном ионы натрия), которые приводят к частичной деполяризации ячейки фоторецептора. При этом этот фоторецептор выбрасывает медиатор (глутамат аминокислоты), который воздействует на инаптические окончания нейронов второго порядка. При незначательном световом возбуждении молекула родопсина изомеризуется в активную форму. Это приводит к закрытию ионного трансмембранного канала, и, соответственно, останавливает катионный поток. В результате клетка фоторецептора гиперполяризуется, а медиаторы перестают выделяться в зоне контакта с нейронами второго порядка.
В темноте через трансммбранные каналы осуществляется поток ионов натрия (80%), кальция (15%), магния и других катионов. Чтобы удалить избыток кальция и натрия во время темноты, в клетках фоторецепторов действует катионный обменник. Ранее считалось, что кальций участвует в фотоизомерации родопсина. Однако в настоящее время получены доказательства того, что этот ион играет и другие роли в фототрансдукции. За счет присутствия достаточной концентрации кальция, палочковые фоторецепторы становятся более восприимчивыми к свету, а также значительно увеличивается восстановление этих клеток после освещения.
Колбочковые фоторецепторы способны приспособиться к уровню освещения, поэтому человеческий глаз способен воспринимать объекты при разном освещении (начиная от теней под деревом и заканчивая предметов, расположенных на блестящем освещенном снегу). Палочковые фоторецепторы имеют меньшую приспособляемость к уровню освещения (7-9 единиц и 2 единицы для колбочек и палочек, соответственно).
Фотопигменты экстерорецепторов колбочек и палочек сетчатки глаза
К фотопигментам колбочкового и палочкового аппарата глаза относят:
- Йодопсин;
- Родопсин;
- Цианолаб.
Все эти пигменты отличаются друг от друга аминокислотами, которые входят в состав молекулы. В связи с этим пигменты поглощают определенную длину волны, точнее диапазон длин.
Фотопигменты экстерорецепторов колбочек
В колбочках сетчатки глаза располагается йодопсин и разновидность йодопсина (цианолаб). Все выделяют три типа йодопсина, которые настроены на длину волны в 560 нм (красный), 530 нм (зеленый) и 420 нм (синий).
О существовании и идентификации цианолаба
Цианолаб представляет собой разновидность йодопсина. В сетчатке глаза синие колбочки располагаются регулярно в периферической зоне, зеленые и красные колбочки локализуются хаотично по всей поверхности сетчатки. При этом плотность распределения колбочек с зеленым пигментов больше, чем красных. Наименьшая плотность отмечается у синих колбочек.
В пользу теории трихромазии свидетельствуют следующие факты:
- Была определена спектральная чувствительность двух пигментов колбочки при помощи денситометрией.
- С использованием микроспектрометрии было определено три пигмента колбочкового аппарата.
- Был идентифицирован генетический код, ответственный за синтез красных, синих и зеленых колбочек.
- Ученым удалось изолировать колбочки и измерить их физиологический ответ на облучение светом с определенной длинной волны.
Теория трохромазии раньше была не в состоянии объяснить наличие четырех основных цветов (синий, желтый, красный, зеленый). Также было затруднительно объяснить, почему люди-дихроматы способны различать белый и желтый цвета. В настоящее время открыт новый фоторецептор сетчатки, в котором роль пигмента исполняет меланопсин. Это открытие расставило все по местам и помогло ответить на многие вопросы.
Также в недавних исследованиях при помощи флуоресцентного микроскопа были изучены срезы сетчатки птиц. При этом было выявлено четыре типа колбочек (фиолетовая, зеленая, красная и синяя). За счет оппонентного цветного зрения фоторецепторы и нейроны дополняют друг друга.
Фотопигмент палочек родопсин
Родопсин относится к семейству G-связанных белков, который так назван из-за механизма трансмембранной передачи сигнала. При этом в процесс вовлекаются G-белки, расположенные в примембранном пространстве. При исследовании родопсина была установлена структура этого пигмента. Это открытие очень важно для биологии и медицины, потому что родопсин является родоначальником в семействе GPCR-рецепторов. В связи с этим его строение используется в изучении всех остальных рецепторов, а также определяет функциональные возможности. Родопсин назван так, потому что имеет ярко-красную окраску (с греческого он дословно переводится как розовое зрение).
Дневное и ночное зрение
Изучая спектры поглощения родопсина, можно заметить, что восстановленный родопсин отвечает за восприятие света в условиях низкой освещенности. При дневном свете этот пигмент разлагается, и максимальная чувствительность родопсина смещается в синюю спектральную область. Это явление получило название эффект Пуркинье.
При ярком освещении палочка перестает воспринимать дневные лучи, а эту роль на себя берет колбочка. При этом происходит возбуждение фоторецепторов в трех областях спектра (синий, зеленый, красный). Далее эти сигналы преобразуются и направляются в центральные структуры мозга. В результате формируется цветное оптическое изображение. Для полного восстановления родопсина в условиях низкой освещенности требуется коло получаса. В течение всего этого времени происходит улучшение сумеречного зрения, которое достигает максимума по окончании периода восстановления пигмента.
Биохимик М.А. Островский провел ряд фундаментальных исследований и показал, что палочки, содержащие пигмент родопсин, участвуют в восприятии объектов в условиях низкого освещения и отвечают за ночное зрение, которое имеет черно-белую окраску.
Источник