Как развивается сетчатка глаза
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.
Запрос «Ретина» перенаправляет сюда; о названии особого вида ЖК-дисплеев см. Retina.
Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.
Строение[править | править код]
Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.
Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:
- пигментного,
- фотосенсорного,
- наружной пограничной мембраны,
- наружного зернистого слоя,
- наружного сплетениевидного слоя,
- внутреннего зернистого слоя,
- внутреннего сплетениевидного слоя,
- ганглионарных клеток,
- слоя волокон зрительного нерва,
- внутренней пограничной мембраны.
Строение сетчатки человека[править | править код]
Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.
Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.
Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.
диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.
На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.
Микроскопическое строение[править | править код]
Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено
См. Пигментный эпителий сетчатки
В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.
Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.
Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).
Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.
Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.
Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.
Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.
Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.
Заболевания[править | править код]
Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:
- Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
- Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
- Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
- Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
- Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
- И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
- Ретинобластома — злокачественная опухоль сетчатки.
- Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
- Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.
Литература[править | править код]
- Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.
Примечание[править | править код]
Ссылки[править | править код]
- Строение сетчатки. // Проект «Eyes for me».
Источник
В период эмбрионального развития происходит формирование сетчатки из нейроэктодермы. Ее пигментный эпителий происходит из наружного листка первичного глазного бокала, а нейросенсорная часть сетчатки является производной внутреннего листка. На этапе инвагинации глазного пузырька клетки внутреннего (беспигментного) листка направлены вершинами кнаружи, при этом они соприкасаются с клетками пигментного эпителия, имеющими первоначально цилиндрическую форму. В дальнейшем (к пятой неделе) клетки приобретают кубическую форму и располагаются в один слой. Именно в этих клетках впервые синтезируется пигмент. Также на стадии глазного бокала происходит формирование базальной пластины и других элементов мембраны Бруха. Уже к шестой неделе развития эмбриона эта мембрана становится весьма развитой, также появляются хориокапилляры, вокруг которых имеется базальная мембрана.
К четвертому месяцу эмбрионального развития клетки пигментного эпителиального слоя становятся гексагональными, а на их поверхности вырастают пальцевидные микроворсины, которые направлены к фоторецепторам во внутреннем нейросенсорном листке.
На шестой неделе эмбриогенеза происходит дифференцировка клеток беспигментного внутреннего листка на внутреннюю краевую и наружную ядерную зоны. В ядерной зоне имеются пролиферирующие клетки, которые постепенно смещаются в краевую область, формируя наружный и внутренний слои нейробластов. Между ними располагается переходный слой, состоящий из отростков нейробластов и называемый транзиторным волокнистым слоем (Chievitz). Этот слой полностью исчезает к 8-10 неделям эмбриогенеза.
К седьмой неделе развития ребенка начинается дифференцировка ганглионарных клеток (внутренний слой нейробластов), которые дают начало первичному слою нервных волокон.
Нейроны сетчатки к 16 неделе эмбриогенеза прекращают делиться путем митоза и переходят в фазу дифференцировки, в результате чего между ними создаются синаптические контакты. Обычно процесс этот происходит волнообразно и направляется от внутренних слоев к наружным, а также от центра сетчатки к периферическим областям. Диск зрительного нерва формируется из аксонов. Внутренняя часть наружного слоя нейробластов дает начало амакриновым клеткам и Мюллеровским телам. Фоторецепторы и горизонтальные клетки располагаются посередине вместе с биполярными клетками и созревают последними в наружном слое сетчатки.
На этапе раннего развития клетки сетчатки способны к восстановлению аксональных отростков. В дальнейшем эта способность угасает и полностью теряется (у крыс к моменту открытия глаз, что приблизительно соответствует восьмимесячному человеческому плоду). Первым из поверхностных гликопротеинов в ганглиозных клетках появляется Thy-1. Считается, что именно эта молекула отвечает за рост аксонов.
Зона макулы начинает развиваться только к шестому месяцу внутриутробного развития. Сначала центральная область представлена скоплением незрелых колбочек и ганглионарных клеток. Одновременно происходит формирование палочковых фоторецепторов, но в периферических областях. Уже к седьмому месяцу после расхождения внутренних ганглионарных клеток образуется центральное макулярное вдавление (первичная ямка). Колбочки, располагающиеся в этой зоне, удлиняются, а концентрация их увеличивается. У новорожденного ребенка фовеальная область состоит из ганглионарных клеток и биполярных нейронов, расположенных в один ряд, а также из наружного горизонтального слоя Генле. Дальнейшее формирование зоны фовеа происходит и после рождения. Лишь спустя несколько месяцев биполярные и ганглионарные клетки окончательно мигрируют из центральной ямки.
Источник
Быстрое развитие и усложнение организации зрительного анализатора в эмбриональном периоде составляет один из наиболее интересных разделов теоретической биологии. В практическом отношении этот вопрос важен с точки зрения выяснения причинной обусловленности организации в пространстве элементов структуры оптико-физиологической системы глаза, определяющих его основные характеристики: преломляющую способность (рефракцию) и остроту зрения.
С точки зрения морфогенеза и формообразования преломляющая способность глаза представляет собой систему наиболее тонкой сопряженности элементов структуры. Можно полагать, что данная характеристика обусловлена основополагающими биологическими законами развития, так как именно категория оптической сопряженности органа зрения составляет первичную основу для последующего его функционального развития.
Увидеть — значит своевременно обнаружить всю совокупность объектов в пространстве в их взаимоотношениях друг с другом. Другие органы чувств выполняют те же функции, но менее быстро и с несравненно более близких дистанций. Таким функциональным назначением зрительный анализатор выдвинут на передние рубежи эволюционного процесса, что должно способствовать накоплению в его основе наиболее качественного генофонда.
Орган зрения, как и все другие органы чувств, в ходе филогенетического развития претерпел сложную эволюцию, которая шла в направлении большего и лучшего приспособления глаза к восприятию окружающего мира. Простейшей формой зрения следует считать начало реакции на свет. Почти все живущее чувствительно к свету. У растений световая реакция проявляется гелиотропизмом (листья растений расположены перпендикулярно солнечному свету, головки цветущего подсолнуха в течение всего дня повернуты к солнцу). У некоторых животных зрительные органы не локализованы, покровы их обладают общей раздражимостью по отношению к свету. Простейший орган зрения присущ дождевому червю – отдельные светочувствительные клетки, расположенные изолированно в эпидермисе животного. Они способны различать только свет и его направление. Глаза простейших животных значительно эволюционируют, заметно усложняясь. Моллюск, стоящий еще на достаточно низкой ступени развития, имеет глаз, который напоминает глаз высших животных. Клетки нейроэпителия обращены не к свету, не к центру глаза, а от света. Возникает тип перевернутой сетчатки, что характеризует глаза высших животных. В глазу моллюска уже есть подобие линзы. Фоторецепторы скрываются в углублениях, где они защищены от яркого света, уменьшающего способность улавливать движущуюся тень. Линза выполняет функцию прозрачной защитной мембраны. Постепенно начинает совершенствоваться защитный аппарат глаза.
Глаз человека по структуре представляет собой типичный глаз позвоночных, однако имеет существенные функциональные отличия. Он развивается из разных тканевых источников.
Сетчатка и зрительный нерв формируются из эктоневральной закладки центральной нервной системы.
На 2-й неделе эмбриональной жизни, когда мозговая трубка еще не замкнута, на дорсальной поверхности медуллярной пластинки появляются два углубления – глазные ямки. На вентральной стороне им соответствует выпячивание. При замыкании мозговой трубки ямки перемещаются, принимают боковое направление. Эта стадия носит название первичного глазного пузыря.
С конца 4-й недели развития возникает хрусталик. Вначале он имеет вид утолщения покровной эктодермы в том месте, где первичный глазной пузырь начинает превращаться во вторичный. Быстро растущие задние и боковые области обрастают передние и нижние части. Однослойный первичный глазной пузырь на полой ножке превращается во вторичный пузырь, состоящий из двух слоев – глазной бокал. При образовании глазного бокала возникает зародышевая щель, которая заполняется прилежащей мезодермой. Между зачатком хрусталика и внутренней стенкой бокала формируется первичное стекловидное тело. В возрасте 6 недель зародышевая щель глаза и зрительного нерва закрывается, начинает дифференцироваться ножка глазного бокала, образуется a. hyaloidea, питающая стекловидное тело и хрусталик. Наружный листок бокала в дальнейшем превращается в пигментный слой сетчатки, из внутреннего же развивается собственно сетчатка. Края глазного бокала, прорастя впереди хрусталика, образуют радужную и ресничную части сетчатки. Ножка, или стебелек, глазного бокала удлиняется, пронизывается нервными волокнами, теряет просвет и превращается в зрительный нерв.
Из мезодермы, окружающей глазной бокал, очень рано начинает дифференцироваться сосудистая оболочка и склера. В мезенхиме, которая прорастает между эктодермой и хрусталиком, появляется щель – передняя камера. Мезенхима, лежащая перед щелью, вместе с эпителием кожи превращается в роговицу, лежащая сзади – в радужку. К этому времени начинается постепенное запустевание сосудов стекловидного тела. Сосудистая капсула хрусталика атрофируется. Внутри хрусталика образуется плотное ядро, объем хрусталика уменьшается. Стекловидное тело приобретает прозрачность. Веки развиваются из кожных складок. Они закладываются кверху и книзу от глазного бокала, растут по направлению друг к другу и спаиваются своим эпителиальным покровом. Спайка эта исчезает к 7 месяцу развития. Слезная железа возникает на 3-м месяце развития, слезный канал открывается в носовую полость на 5-м месяце.
К моменту рождения ребенка весь сложный цикл развития глаза не всегда оказывается полностью завершенным. Обратное развитие элементов зрачковой перепонки, сосудов стекловидного тела и хрусталика может происходить и в первые недели после рождения. Величайшая потребность новорожденного в совершенной и быстрой адаптации к внешним условиям, правильному развитию и росту, что в большой мере может быть обусловлено безупречным функционированием оптико-вегетативной системы, ведет к наиболее быстрому формированию, прежде всего зрительного анализатора. Рост и развитие глаза у ребенка в основном завершаются к 2-3 годам, а последующие 15-20 лет глаз изменяется меньше, чем за первые 1-2 года. Глаз новорожденного существенно отличается по размерам, массе, гистологической структуре, физиологии и функциям от глаза взрослого.
После рождения зрительный анализатор проходит определенные этапы развития, среди которых можно выделить следующие.
- Морфологическое формирование в течение первого полугодия жизни области желтого пятна и центральной ямки сетчатки. Из десяти слоев остается в основном четыре слоя; в их числе зрительные клетки, их ядра и бесструктурные пограничные мембраны.Формирование и совершенствование функциональной мобильности зрительных путей в течение первого полугодия жизни.
- Морфологическое и функциональное совершенствование зрительных клеточных элементов коры большого мозга и корковых зрительных центров в течение первых 2 лет жизни.
- Формирование и укрепление связей зрительного анализатора и его взаимосвязей с другими анализаторами в течение первых лет жизни.
- Морфологическое и функциональное развитие черепных нервов в первые (2-4) месяцы жизни.
Эмбриогенез глаза
Гестационный возраст эмбриона или плода | Длина передне-задней оси, мм | Состояние глаза |
3 нед | 1,5-4,5 | Возникновение глазных ямок и их переход в глазные пузыри. Образование эктодермальной пластинки — зачатка линзы. Появление открытой ножки глазного пузыря. |
4 нед | 4,5-7,5 | Образование глазного бокала, хрусталиковой ямки. Врастание артерии стекловидного тела в зародышевую щель глазного бокала. Дифференцирование сетчатки на два слоя вблизи заднего полюса. Образование примитивного диска зрительного нерва. |
5 нед | 7,5-12 | Образование хрусталикового пузырька — капсулы линзы, волокон и капсульного эпителия. Возникновение сосудистой сумки линзы, сосудистой сети хориодеи, примитивного нейроэпителия |
6 нед | 12-17 | Возникновение капсулозрачковой мембраны, собственных сосудов первичного стекловидного тела, мезодермального стекловидного тела, слоев ганглиозных клеток. Формирование слоев роговицы |
7 нед | 17-24 | Возникновение зачатка век. Формирование передних и задних ресничных артерий. Вхождение нервных волокон от ганглиозных клеток в канал зрительного нерва. Развитие стромы радужки. Образование слезных канальцев в виде эпителиальных тяжей |
8 нед | 24-31 | Развитие склеры. Возникновение эмбрионального ядра хрусталика. Развитие частичного перекреста нервных волокон в хиазме. Появление зрительного тракта. Формирование орбитальной части слезной железы |
9 нед | 31-40 | Срастание краев век. Исчезновение собственных сосудов стекловидного тела. Появление вторичного стекловидного тела |
10 нед | 40-49 | Возникновение палочек и колбочек в виде нитевидных отростков |
11 нед | 49-50 | Образование глиозного отростка на диске зрительного нерва. Возникновение эктодермальной части радужки, ресничного тела |
12 нед | 59-70 | Формирование зародышевого ядра хрусталика с ламбдовидными швами. Конец эмбрионального периода развития |
4 мес | 70-110 | Образование сосудистого кольца зрительного нерва (цинново сосудистое кольцо). Возникновение влагалища глазного яблока (тенонова капсула). Формирование мышцы, поднимающей верхнее веко. Появление артерий сетчатки в зоне вокруг диска зрительного нерва. |
5 мес | 110—160 | Открытие слезных путей в носовую полость |
6 мес | 160-200 | Формирование глиальных чехлов вокруг артерии стекловидного тела |
7 мес | 200-240 | Исчезновение межзрачковой мембраны и облитерация артерии стекловидного тела. Разъединение сращенных век |
8 мес | 240-250 | Развитие решетчатой пластинки зрительного нерва. Исчезновение задней сосудистой сумки линзы |
9 мес | Развитие хиазмы и зрительного нерва. Исчезновение сосудов стекловидного тела |
Глазное яблоко (bulbus oculi) по своей форме приближается к шаровидной. По данным эхобиометрии, средний переднезадний размер его равен 16,2 мм. К первому году жизни ребенка этот размер увеличивается до 19,2 мм, к 3 годам – до 20,5, к 7 – до 21,1, к 11 – до 22, к 15 – до 23 и к 20-25 годам он составляет примерно 24 мм.
Наружная фиброзная оболочка, или капсула, глаза представлена плотной и ригидной тканью 9/10 ее составляет непрозрачная часть – склера и 1/10 – прозрачная часть – роговица. Капсула по своей структуре аналогична твердой мозговой оболочке. Она выполняет защитную роль, обусловливает постоянство формы, объема и тонуса глазного яблока, является остовом для прикрепления глазодвигательных мышц; ее прободают сосуды и нервы, и в том числе зрительный нерв.
Источник