Как проходят сканирование сетчатки
Первые сканеры сетчатки появились ещё в 80-х годах прошлого столетия. Они получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа, но, несмотря на это, сканеры сетчатки не получили широкого распространения в массы из-за дороговизны и сложности оптической системы сканирования. И до недавнего времени всё так и оставалось, хотя алгоритмы продолжали развиваться.
На сегодняшний день технология 3d печати позволила сильно удешевить сканеры сетчатки глаза. Эндрю Баставрус вместе со своей командой напечатали на 3d принтере насадку для смартфона, которая позволяет наблюдать сетчатку через камеру телефона.
Данная статья посвящена описанию алгоритмов сопоставления признаков сетчатки глаза и является продолжением статьи о сегментации кровеносных сосудов.
Обзор методов биометрической идентификации/аутентификации приведён здесь.
Одной из наиболее важных проблем при использовании сетчатки глаза для распознавания личности является движение головы или глаза во время сканирования. Из-за этих движений может возникнуть смещение, вращение и масштабирование относительно образца из базы данных (рис. 1).
Рис. 1. Результат движения головы и глаза при сканировании сетчатки.
Влияние изменения масштаба на сравнение сетчаток не так критично, как влияние других параметров, поскольку положение головы и глаза более или менее зафиксировано по оси, соответствующей масштабу. В случае, когда масштабирование всё же есть, оно столь мало, что не оказывает практически никакого влияния на сравнение сетчаток. Таким образом, основным требованием к алгоритму является устойчивость к вращению и смещению сетчатки.
Алгоритмы аутентификации по сетчатке глаза можно разделить на два типа: те, которые для извлечения признаков используют алгоритмы сегментации (алгоритм, основанный на методе фазовой корреляции; алгоритм, основанный на поиске точек разветвления) и те, которые извлекают признаки непосредственно с изображения сетчатки (алгоритм, использующий углы Харриса).
1. Алгоритм, основанный на методе фазовой корреляции
Суть алгоритма заключается в том, что при помощи метода фазовой корреляции оцениваются смещение и вращение одного изображения относительно другого. После чего изображения выравниваются и вычисляется показатель их схожести.
В реализации метод фазовой корреляции работает с бинарными изображениями, однако может применяться и для изображений в 8-битном цветовом пространстве.
Пусть и – изображения, одно из которых сдвинуто на относительно другого, а и – их преобразования Фурье, тогда:
где – кросс-спектр;
– комплексно сопряженное
Вычисляя обратное преобразование Фурье кросс-спектра, получим импульс-функцию:
Найдя максимум этой функции, найдём искомое смещение.
Теперь найдём угол вращения при наличии смещения , используя полярные координаты:
Далее применяется метод фазовой корреляции, как в предыдущем случае. Можно отметить, что такая модификация фазовой корреляции позволяет найти и масштаб по параметру
Данная техника не всегда показывает хорошие результаты на практике из-за наличия небольших шумов и того, что часть сосудов может присутствовать на одном изображении и отсутствовать на другом. Чтобы это устранить применяется несколько итераций данного алгоритма, в том числе меняется порядок подачи изображений в функцию и порядок устранения смещения и вращения. На каждой итерации изображения выравниваются, после чего вычисляется их показатель схожести, затем находится максимальный показатель схожести, который и будет конечным результатом сравнения.
Показатель схожести вычисляется следующим образом:
2. Алгоритм, использующий углы Харриса
Данный алгоритм, в отличие от предыдущего, не требует сегментации сосудов, поскольку может определять признаки не только на бинарном изображении.
В начале изображения выравниваются при помощи метода фазовой корреляции, описанного в предыдущем разделе. Затем на изображениях ищутся углы Харриса (рис. 2).
Рис. 2. Результат поиска углов Харриса на изображениях сетчатки.
Пусть найдена M+1 точка, тогда для каждой j-й точки её декартовы координаты преобразуются в полярные и определяется вектор признаков где
Модель подобия между неизвестным вектором и вектором признаков размера N в точке j определяется следующим образом:
где – константа, которая определяется ещё до поиска углов Харриса.
Функция описывает близость и похожесть вектора ко всем признакам точки j.
Пусть вектор – вектор признаков первого изображения, где размера K–1, а вектор – вектор признаков второго изображения, где размера J–1, тогда показатель схожести этих изображений вычисляется следующим образом:
Нормировочный коэффициент для similarity равняется
Коэффициент в оригинальной статье предлагается определять по следующему критерию: если разница между гистограммами изображений меньше заранее заданного значения, то = 0.25, в противном случае = 1.
3. Алгоритм, основанный на поиске точек разветвления
Данный алгоритм, как и предыдущий, ищет точки разветвления у системы кровеносных сосудов. При этом он более специализирован на поиске точек бифуркации и пересечения (рис. 3) и намного более устойчив к шумам, однако может работать только на бинарных изображениях.
Рис. 3. Типы признаков (слева – точка бифуркации, справа – точка пересечения).
Для поиска точек, как на рис. 3, сегментированные сосуды сжимаются до толщины одного пикселя. Таким образом, можно классифицировать каждую точку сосудов по количеству соседей S:
- если S = 1, то это конечная точка;
- если S = 2, то это внутренняя точка;
- если S = 3, то это точка бифуркации;
- если S = 4, то это точка пересечения.
3.1. Алгоритм сжатия сосудов до толщины одного пикселя и классификация точек разветвления
Вначале выполняется поиск пикселя, являющегося частью сосуда, сверху вниз слева направо. Предполагается, что каждый пиксель сосуда может иметь не более двух соседних пикселей сосудов (предыдущий и следующий), во избежание двусмысленности в последующих вычислениях.
Далее анализируются 4 соседних пикселя найденной точки, которые ещё не были рассмотрены. Это приводит к 16 возможным конфигурациям (рис. 4). Если пиксель в середине окна не имеет соседей серого цвета, как показано на рис. 4 (a), то он отбрасывается и ищется другой пиксель кровеносных сосудов. В других случаях это либо конечная точка, либо внутренняя (не включая точки бифуркации и пересечения).
Рис. 4. 16 возможных конфигураций четырёх соседних пикселей (белые точки – фон, серые – сосуды). 3 верхних пикселя и один слева уже были проанализированы, поэтому игнорируются. Серые пиксели с крестиком внутри также игнорируются. Точки со стрелочкой внутри – точки, которые могут стать следующим центральным пикселем. Пиксели с чёрной точкой внутри – это конечные точки.
На каждом шаге сосед серого цвета последнего пикселя помечается как пройденный и выбирается следующим центральным пикселем в окошке 3 x 3. Выбор такого соседа определяется следующим критерием: наилучший сосед тот, у которого наибольшее количество непомеченных серых соседей. Такая эвристика обусловлена идеей поддержания однопиксельной толщины в середине сосуда, где большее число соседей серого цвета.
Из вышеизложенного алгоритма следует, что он приводит к разъединению сосудов. Также сосуды могут разъединиться ещё на этапе сегментации. Поэтому необходимо соединить их обратно.
Для восстановления связи между двумя близлежащими конечными точками определяются углы и как на рис. 5, и если они меньше заранее заданного угла то конечные точки объединяются.
Рис. 5. Объединение конечных точек после сжатия.
Чтобы восстановить точки бифуркации и пересечения (рис. 6) для каждой конечной точки вычисляется её направление, после чего производится расширение сегмента фиксированной длины Если это расширение пересекается с другим сегментом, то найдена точка бифуркации либо пересечения.
Рис. 6. Восстановление точки бифуркации.
Точка пересечения представляет собой две точки бифуркации, поэтому для упрощения задачи можно искать только точки бифуркации. Чтобы удалить ложные выбросы, вызванные точками пересечения, можно отбрасывать точки, которые находится слишком близко к другой найденной точке.
Для нахождения точек пересечения необходим дополнительный анализ (рис. 7).
Рис. 7. Классификация точек разветвления по количеству пересечений сосудов с окружностью. (a) Точка бифуркации. (b) Точка пересечения.
Как видно на рис. 7 (b), в зависимости от длины радиуса окружность с центром в точке разветвления может пересекаться с кровеносными сосудами либо в трех, либо в четырёх точках. Поэтому точка разветвления может быть не правильно классифицирована. Чтобы избавиться от этой проблемы используется система голосования, изображённая на рис. 8.
Рис. 8. Схема классификации точек бифуркации и пересечения.
В этой системе голосования точка разветвления классифицируется для трёх различных радиусов по количеству пересечений окружности с кровеносными сосудами. Радиусы определяются как: где и принимают фиксированные значения. При этом вычисляются два значения и означающие количество голосов за то, чтобы точка была классифицирована как точка пересечения и как точка бифуркации соответственно:
где и – бинарные значения, указывающие идентифицирована ли точка с использованием радиуса как точка пересечения либо как точка бифуркации соответственно.
В случае если то тип точки не определён. Если же значение отличаются друг от друга, то при точка классифицируется как точка пересечения, в противном случае как точка бифуркации.
3.2. Поиск преобразования подобия и определение метрики схожести
После того, как точки найдены, необходимо найти преобразование подобия. Это преобразование описывается 4 параметрами – смещение по оси и , масштаб и вращение соответственно.
Само преобразование определяется как:
где – координаты точки на первом изображении
– на втором изображении
Для нахождения преобразования подобия используются пары контрольных точек. Например, точки определяют вектор где – координаты начала вектора, – длина вектора и – направление вектора. Таким же образом определяется вектор для точек Пример представлен на рис. 9.
Рис. 9. Пример двух пар контрольных точек.
Параметры преобразования подобия находятся из следующих равенств:
Пусть количество найденных точек на первом изображения равняется M, а на втором N, тогда количество пар контрольных точек на первом изображении равно а на втором Таким образом, получаем возможных преобразований, среди которых верным выбирается то, при котором количество совпавших точек наибольшее.
Поскольку значение параметра S близко к единице, то T можно уменьшить, отбрасывая пары точек, неудовлетворяющие следующему неравенству:
где – это минимальный порог для параметра
– это максимальный порог для параметра
– пара контрольных точек из
– пара контрольных точек из
После применения одного из возможных вариантов выравнивания для точек и вычисляется показатель схожести:
где – пороговая максимальная дистанция между точками.
В случае если то
В некоторых случаях обе точки могут иметь хорошее значение похожести с точкой . Это случается, когда и находятся близко друг к другу. Для определения наиболее подходящей пары вычисляется вероятность схожести:
где
Если то
Чтобы найти количество совпавших точек строится матрица Q размера M x N так, что в i-й строке и j-м столбце содержится
Затем в матрице Q ищется максимальный ненулевой элемент. Пусть этот элемент содержится в -й строке и -м столбце, тогда точки и определяются как совпавшие, а -я строка и -й столбец обнуляются. После чего опять ищется максимальный элемент. Поиск таких максимумов повторяется до тех пор, пока все элементы матрицы Q не обнулятся. На выходе алгоритма получаем количество совпавших точек C.
Метрику схожести двух сетчаток можно определить несколькими способами:
где – параметр, который вводится для настройки влияния количества совпавших точек;
f выбирается одним из следующих вариантов:
Метрика нормализуется одним из двух способов:
где и – некоторые константы.
3.3. Дополнительные усложнения алгоритма
Метод, основанный на поиске точек разветвления, можно усложнить, добавляя дополнительные признаки, например углы, как на рис. 10.
Рис. 10. Углы, образованные точками разветвления, в качестве дополнительных признаков.
Также можно применять шифр гаммирования. Как известно, сложение по модулю 2 является абсолютно стойким шифром, когда длина ключа равна длине текста, а поскольку количество точек бифуркации и пересечения не превышает порядка 100, но всё же больше длины обычных паролей, то в качестве ключа можно использовать комбинацию хешей пароля. Это избавляет от необходимости хранить в базе данных сетчатки глаза и хеши паролей. Нужно хранить только координаты, зашифрованные абсолютно стойким шифром.
Аутентификация по сетчатке действительно показывает точные результаты. Алгоритм, основанный на методе фазовой корреляции, не допустил ни одной ошибки при тестировании на базе данных VARIA. Также алгоритм был протестирован на неразмеченной базе MESSIDOR с целью проверки алгоритма на ложные срабатывания. Все найденные алгоритмом пары похожих сетчаток были проверены вручную. Они действительно являются одинаковыми. На сравнение кровеносных сосудов двух сетчаток глаз из базы VARIA уходит в среднем 1.2 секунды на двух ядрах процессора Pentium Dual-CoreT4500 с частотой 2.30 GHz. Время исполнения алгоритма получилось довольно большое для идентификации, но оно приемлемо для аутентификации.
Также была предпринята попытка реализации алгоритма, использующего углы Харриса, но получить удовлетворительных результатов не удалось. Как и в предыдущем алгоритме, возникла проблема в устранении вращения и смещения при помощи метода фазовой корреляции. Вторая проблема связана с недостатками алгоритма поиска углов Харриса. При одном и том же пороговом значении для отсева точек, количество найденных точек может оказаться либо слишком большим либо слишком малым.
В дальнейших планах стоит разработка алгоритма, основанного на поиске точек разветвления. Он требует гораздо меньше вычислительных ресурсов по сравнению с алгоритмом, основанном на методе фазовой корреляции. Кроме того, существуют возможности для его усложнения в целях сведения к минимуму вероятности взлома системы.
Другим интересным направлением в дальнейших исследованиях является разработка автоматических систем для ранней диагностики заболеваний, таких как глаукома, сахарный диабет, атеросклероз и многие другие.
Список использованных источников и литературы
- Reddy B.S. and Chatterji B.N. An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration // IEEE Transactions on Image Processing. 1996. Vol. 5. No. 8. pp. 1266-1271.
- Human recognition based on retinal images and using new similarity function / A. Dehghani [et al.] // EURASIP Journal on Image and Video Processing. 2013.
- Hortas M.O. Automatic system for personal authentication using the retinal vessel tree as biometric pattern. PhD Thesis. Universidade da Coruña. La Coruña. 2009.
- VARIA database
- MESSIDOR database
p.s. по немногочисленным просьбам выкладываю ссылку на проект на гитхабе.
Источник
Биометрические системы аутентификации — системы аутентификации, использующие для удостоверения личности людей их биометрические данные.
Биометрическая аутентификация — процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определённым протоколом аутентификации.
Не следует путать данные системы с системами биометрической идентификации, каковыми являются, к примеру системы распознавания лиц водителей[1] и биометрические средства учёта рабочего времени[2]. Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию. Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).
Методы аутентификации[править | править код]
Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:
- Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).
- Использование ключей. Пользователь предъявляет свой персональный идентификатор, являющийся физическим носителем секретного ключа. Обычно используются пластиковые карты с магнитной полосой и другие устройства.
- Биометрия. Пользователь предъявляет параметр, который является частью его самого. Биометрический класс отличается тем, что идентификации подвергаются биологические особенности человека — его индивидуальные характеристики (рисунок папиллярного узора[3], отпечатки пальцев, термограмму лица и т. д.).
Биометрические системы доступа являются очень удобными для пользователей. В отличие от паролей и носителей информации, которые могут быть потеряны, украдены, скопированы, Биометрические системы доступа основаны на человеческих параметрах, которые всегда находятся вместе с ними, и проблема их сохранности не возникает. Потерять их почти невозможно. Также невозможна передача идентификатора третьим лицам [источник не указан 2300 дней]. Впрочем, можно насильственно изъять параметры. В кинофильмах и анимации было неоднократно показано, что глаза и руки можно ампутировать (или использовать пользователя как заложника-токен). Можно так же изготовить копии, в том числе и скрытно считав параметры. Однако многие методы имеют защиту от использования мертвого органа или копии. Так, многие сканеры радужной оболочки имеют так же инфракрасный сканер, определяющие теплый ли глаз/макет или нет (можно обойти, нагрев глаз или использовать линзы с рисунком). Проводятся исследования возможности использования кратковременной вспышки и сканирования моторной реакции зрачка, однако метод имеет потенциальные проблемы при использовании офтальмологических препаратов и наркотическом опьянении[4]. Сканеры отпечатков пальцев могут комбинировать емкостное и ультразвуковое (защищает от копии распечатанной струйным принтером токопроводящими чернилами) сканирование (можно обмануть с помощью 3D принтера и токопроводящего материала). Надежнее всего здесь метод сканирования сетчатки глаза, изготовить макет очень сложно, после смерти же сосуды сетчатки перестают накачиваться кровью, и сканер способен это определить. Полностью насильственное использование заложника потенциально можно определить с помощью анализа поведения на видео, например, при помощи нейронных сетей.
Обзор биометрических методов аутентификации[править | править код]
В настоящее время широко используется большое количество методов биометрической аутентификации, которые делятся на два класса.
- Статические методы биометрической аутентификации основаны на физиологических характеристиках человека, присутствующих от рождения и до смерти, находящиеся при нём в течение всей его жизни, и которые не могут быть потеряны, украдены и скопированы.
- Динамические методы биометрической аутентификации основываются на поведенческих характеристиках людей, то есть основаны на характерных для подсознательных движений в процессе воспроизведения или повторения какого-либо обыденного действия[5].[неавторитетный источник?][источник не указан 2300 дней][6]
Критерии для биометрических параметров. Они обязаны соответствовать следующим пунктам[7]:
- Всеобщность: Данный признак должен присутствовать у всех людей без исключения.
- Уникальность: Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.
- Постоянство: для корректной аутентификации необходимо постоянство во времени.
- Измеримость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.
- Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.
Статические методы[править | править код]
Аутентификация по отпечатку пальца[править | править код]
Биометрический терминал учета рабочего времени PERCo CR11 с оптоволоконным сканером отпечатков пальцев.
Аутентификация по отпечаткам пальцев — самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток, полученный с помощью сканера, преобразовывается в цифровой код, а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев — легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.
Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.
Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые[8][неавторитетный источник?][источник не указан 2300 дней].
Аутентификация по радужной оболочке глаза[править | править код]
Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка — тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей, между передней и задней камерами глаза, перед хрусталиком. Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.
Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации[9].[неавторитетный источник?][источник не указан 2300 дней].
Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.
Аутентификация по сетчатке глаза[править | править код]
Метод аутентификации по сетчатке глаза получил практическое применение примерно в середине 50-х годов прошлого века. Именно тогда была установлена уникальность рисунка кровеносных сосудов глазного дна (даже у близнецов данные рисунки не совпадают). Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен особых точек, информация о которых сохраняется в шаблоне.
К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякому человеку приятно смотреть в непонятное темное отверстие, где что-то светит в глаз. К тому же, подобные системы требуют чёткого изображения и, как правило, чувствительны к неправильной ориентации сетчатки. Поэтому требуется смотреть очень аккуратно, а наличие некоторых заболеваний (например, катаракты) может препятствовать использованию данного метода. Сканеры для сетчатки глаза получили большое распространение для доступа к сверхсекретным объектам, поскольку обеспечивают одну из самых низких вероятностей ошибки первого рода (отказ в доступе для зарегистрированного пользователя) и почти нулевой процент ошибок второго рода[10].
Аутентификация по геометрии руки[править | править код]
В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки, расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит» может сильно помешать применению сканеров.
С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.
Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура, ни влажность, ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы.
Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов[11].[неавторитетный источник?][источник не указан 2300 дней]
Аутентификация по геометрии лица[править | править код]
Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации. Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий, с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определённому человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды[11].[неавторитетный источник?][источник не указан 2300 дней]
Аутентификация по термограмме лица[править | править код]
Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона. В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения[12].
Динамические методы[править | править код]
Аутентификация по голосу[править | править код]
Биометрический метод аутентификации по голосу, характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы. В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция, интонация, высота тона, и т. п.
Основным и определяющим недостатком метода аутентификации по голосу — низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.[13]
Аутентификация по рукописному почерку[править | править код]
Метод биометрической аутентификации по рукописному почерку основывается на специфическом движении человеческой руки во время подписания документов. Для сохранения подписи используют специальные ручки или восприимчивые к давлению поверхности. Этот вид аутентификации человека использует его подпись. Шаблон создается в зависимости от необходимого уровня защиты. Обычно выделяют два способа обработки данных о подписи:
- Анализ самой подписи, то есть используется просто степень совпадения двух картинок.
- Анализ динамических характеристик написания, то есть для аутентификации строится свертка, в которую входит информация по подписи, временными и статистическими характеристиками её написания.
Комбинированная биометрическая система аутентификации[править | править код]
Комбинированная (мультимодальная) биометрическая система аутентификации применяет различные дополнения для использования нескольких типов биометрических характеристик, что позволяет соединить несколько типов биометрических технологий в системах аутентификации в одной. Это позволяет удовлетворить самые строгие требования к эффективности системы аутентификации. Например, аутентификация по отпечаткам пальцев может легко сочетаться со сканированием руки. Такая структура может использовать все виды биометрических данных человека и может применяться там, где приходится форсировать ограничения одной биометрической характеристики.
Комбинированные системы являются более надежными с точки зрения возможности имитации биометрических данных человека, так как труднее подделать целый ряд характеристик, чем фальсифицировать один биометрический признак[14].[неавторитетный источник?][источник не указан 2300 дней]
Примечания[править | править код]
- ↑ Российский биометрический портал
- ↑ Российский биометрический портал
- ↑ радужная оболочка глаза
- ↑ Biometrics Researcher Asks: Is That Eyeball Dead or Alive? (англ.), IEEE Spectrum: Technology, Engineering, and Science News. Дата обращения 17 апреля 2017.
- ↑ Биометрические системы безопасности. (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
- ↑ Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 23. — 368 с. — ISBN 978-5-94836-109-3.
- ↑ Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 22. — 368 с. — ISBN 978-5-94836-109-3.
- ↑ Идентификация по отпечаткам пальцев. Часть 1. Виталий Задорожный (недоступная ссылка). Дата обращения 22 ноября 2011. Архивировано 16 сентября 2011 года.
- ↑ Компоненты биометрических систем
- ↑ [Шаров В. Биометрические методы компьютерной безопасности]
- ↑ 1 2 Попов М. Биометрические системы безопасности. (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
- ↑ [Климакин С. П., Петруненков А. А., Черномордик О. М. Эра биометрики.]
- ↑ Шаров В. Биометрические методы компьютерной безопасности.
- ↑ биометрических систем. (недоступная ссылка)
Ссылки[править | править код]
- Биометрия как она есть (недоступная ссылка)
- Обведем вокруг пальца?
Источник