Группируются в основном в центре сетчатки

Следующая, одна из важнейших структур глазного яблока — это сетчатка (ранее называвшаяся сетчатой оболочкой). Прежнее название имеет право на применение, так как наружная стекловидная пластика и пигментный листок сетчатки доходят до зрачкового края радужки, хотя другие ее слои (а их 8) оканчиваются у так называемой зубчатой линии, т. е. границы между цилиарным телом и сетчаткой. Основными слоями сетчатки, которые принято называть нейроэпителием, являются слой палочек и колбочек, слой ядерных и слой ганглиозных клеток.

Палочки — это носители сумеречного (мезоскотопического) зрения и определяют периферическое зрение. В палочках сосредоточен сверхактивный фермент родопсин. Они располагаются вне центральной зоны сетчатки. Их количество превышает сотню миллионов.

Колбочки — это носители дневного (фотопического) центрального зрения, включающего остроту и цветовое зрение. Колбочки, а их около десятка миллионов, содержат в себе фотоактивный фермент иодопсин. Существуют данные о том, что и в палочках, и в колбочках есть и другие фотоактивные ферменты (порфиропсин и др.).

Колбочки сосредоточены в центральной зоне сетчатки, называемой макулой (пятно). Количество колбочек резко уменьшается к периферии и у зубчатой линии их ничтожно мало. А количество палочек от зоны макулы к периферии возрастает. В центре макулы имеется самая активная светочувствительная зона в виде «ямки» и «ямочки» (фовеа и фовеола). Если иметь в виду, что у новорожденного в сетчатке 10 слоев на всем протяжении до зубчатой зоны, то в макуле и тем более в ее ямке количество слоев с возрастом постепенно уменьшается и по существу остается только нейроэпителий и две стекловидные пластинки. Уменьшение слоев сетчатки в макуле происходит исключительно под влиянием света. Например, при наличии тотального помутнения роговицы (хрусталика, стекловидного тела) макулярная зона остается многослойной.

Если в течение первых 4-6 мес жизни ребенка не обеспечить попадание (депривация) к центру сетчатки достаточного количества света (более, но не менее 2 фотонов, квантов), это так называемый сенситивный период, то сетчатка здесь не изменяется. Последующее, после 6 мес депривации, устранение помутнений в структурах глаза уже почти не влияет на состояние сетчатки, и зрение остается очень низким. Поэтому в последнее десятилетие предложено (Е. И. Ковалевский), начиная с рождения ребенка, имеющего помутнения прозрачных сред глаза, осуществлять «перманентное» расширение зрачка и давать дополнительные «фигурные» засветы глаза, что обеспечивает поступление света, достаточное для истончения сетчатки, возбуждения нейроэпителия (более 5 квантов) и возникновения фотохимического (зрительного) процесса.

Еще более эффективный путь ликвидации возможности недоразвития сетчатки, а по существу и всего зрительного анализатора, состоит в раннем устранении помутнений оптических сред глаза (кератопластика, экстракция катаракты, витреоэктомия и др.). Отростки палочек и колбочек (аксоны, дендриты) группируются в волокна зрительного нерва. Из отростков колбочкового аппарата формируется так называемый папилломакулярный пучок, входящий в зрительный нерв и обеспечивающий самую высокую зрительную функцию глаза. Сетчатка в соответствии со своей морфологией и наличием или отсутствием в ее структурах нейроэпителия делится на два отдела: оптически деятельный (до зубчатой линии) и оптически недеятельный (за зубчатой линией). В зависимости от качества и количества пигмента в сосудистой оболочке и пигментном эпителии активность тона (цвета) сетчатки бывает различной. У новорожденных она преимущественно светлее, как бы прозрачнее, чем у детей старшего возраста, но это зависит также от общего вида ребенка (блондин, брюнет, шатен, альбинос, негр, «желтая» раса и др.). Состояние глазного дна определяется офтальмоскопически и биомикроскопически. Сетчатка представляется бледно-розовой, рефлексирующей. Более интенсивный тон сетчатки отмечается в центре и светлее — на периферии. В макулярной зоне она желтоватая, а в центральной ямке темно-коричневая (черная).

Питание сетчатки наряду с сосудами хориоидеи осуществляется центральной артерией сетчатки (ЦАС), являющейся ветвью внутренней сонной артерии. Чувствительной или двигательной иннервации в сетчатке нет. Отток крови происходит по центральной вене сетчатки (ЦВС) в кавернозный синус.

Koвaлeвcкий E. И.

Сетчатка

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2018;
проверки требуют 3 правки.

Запрос «Ретина» перенаправляет сюда; о названии особого вида ЖК-дисплеев см. Retina.

Сетча́тка (лат. retína) — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Строение[править | править код]

Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.

Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10[2] следующих вглубь глазного яблока слоёв:

  • пигментного,
  • фотосенсорного,
  • наружной пограничной мембраны,
  • наружного зернистого слоя,
  • наружного сплетениевидного слоя,
  • внутреннего зернистого слоя,
  • внутреннего сплетениевидного слоя,
  • ганглионарных клеток,
  • слоя волокон зрительного нерва,
  • внутренней пограничной мембраны.

Строение сетчатки человека[править | править код]

Сетчатка глаза у взрослого человека имеет диаметральный размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока.

Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки.

Около центра сетчатки (ближе к носу) на задней её поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепое пятно». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов ганглионарных нейроцитов сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.

диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение (жёлтое пятно). В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют.

Читайте также:  Атрофия сетчатки у собак тесты

На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.

Микроскопическое строение[править | править код]

Упрощенная схема расположения нейронов сетчатки. Сетчатка состоит из нескольких слоев нейронов. Свет падает слева и проходит через все слои, достигая фоторецепторов (правый слой). От фоторецепторов сигнал передается биполярным клеткам и горизонтальным клеткам (средний слой, обозначен жёлтым цветом). Затем сигнал передается амакриновым и ганглионарным клеткам (левый слой). Эти нейроны генерируют потенциалы действия, передающиеся по зрительному нерву в мозг. С рисунка Сантьяго Рамон-и-Кахаля, видоизменено

См. Пигментный эпителий сетчатки

В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов.

Ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет, прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции, должен проникнуть через все слои сетчатки. Однако он не может пройти через пигментный эпителий или хориоидею, которые являются непрозрачными.

Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера).

Кроме фоторецепторных и ганглионарных нейронов, в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке.

Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками и вертикально ориентированными биполярными клетками, во втором — сигнал переключается с биполярных на ганглионарные нейроны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарные клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва.

Каждая сетчатка у человека содержит около 6—7 млн колбочек и 110—125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

Заболевания[править | править код]

Есть множество наследственных и приобретённых заболеваний и расстройств, поражающих, в том числе, сетчатку. Перечислены некоторые из них:

  • Пигментная дегенерация сетчатки — наследственное заболевание с поражением сетчатки, протекает с утратой периферического зрения.
  • Дистрофия жёлтого пятна — группа заболеваний, характеризующихся утратой центрального зрения вследствие гибели или повреждения клеток пятна.
  • Дистрофия макулярной области сетчатки — наследственное заболевание с двусторонним симметричным поражением макулярной зоны, протекающее с утратой центрального зрения.
  • Палочко-колбочковая дистрофия — группа заболеваний, при которых потеря зрения обусловлена повреждением фоторецепторных клеток сетчатки.
  • Отслоение сетчатки от задней стенки глазного яблока. Игнипунктура — устаревший метод лечения.
  • И артериальная гипертензия, и сахарный диабет могут вызвать повреждение капилляров, снабжающих сетчатку кровью, что ведёт к развитию гипертонической или диабетической ретинопатии.
  • Ретинобластома — злокачественная опухоль сетчатки.
  • Меланома сетчатки- злокачественная опухоль из пигментных клеток- меланоцитов, рассеянных в сетчатке.
  • Макулодистрофия — патология сосудов и нарушение питания центральной зоны сетчатки.

Литература[править | править код]

  • Савельева-Новосёлова Н. А., Савельев А. В. Принципы офтальмонейрокибернетики // В сборнике «Искусственный интеллект. Интеллектуальные системы». — Донецк-Таганрог-Минск, 2009. — С. 117—120.

Примечание[править | править код]

Ссылки[править | править код]

  • Строение сетчатки. // Проект «Eyes for me».

Источник

Сетчатая оболочка распространяется от диска зрительного нерва до зрачкового края радужки.

При этом ее оптически деятельная часть заканчивается зубчатой линией у плоской части цилиарного тела.

Далее, потеряв оптические свойства, сетчатка в виде двух эпителиальных слоев покрывает внутреннюю поверхность цилиарного тела и радужки. Толщина сетчатки в перипапиллярной зоне составляет 0,4-0,5 мм, в области желтого пятна — 0,07-0,08 мм, а у зубчатой линии — 0,14 мм.

Особенности строения сетчатки глаза

Сетчатая оболочка крепится прочно к подлежащей сосудистой только вокруг диска зрительного нерва, по краю желтого пятна и вдоль зубчатой линии. На остальных участках ее соединение рыхлое и поддерживается преимущественно за счет давления стекловидного тела.

Почти на всем протяжении оптически активная часть сетчатки состоит из 10 слоев: 1) пигментного эпителия, 2) палочек и колбочек, 3) наружной пограничной мембраны, 4) наружного ядерного слоя, 5) наружного плексиформного слоя, 6) внутреннего ядерного слоя, 7) внутреннего плексиформного слоя, 8) слоя ганглиозных клеток, 9) слоя нервных волокон, 10) внутренней пограничной мембраны.

По мере приближения к желтому пятну строение сетчатки изменяется, исчезает слой нервных волокон, затем слой ганглиозных клеток, далее — внутренний плексиформный слой, внутренний ядерный и наружный плексиформный. Фовеа желтого пятна состоит только из колбочек и поэтому имеет самую высокую разрешающую способность.

Фоторецепторы обращены к пигментному эпителию, представлены палочками (100-120 млн.) и колбочками (около 7 млн.). Первые группируются в периферических отделах сетчатки, а вторые — в центральных. Палочки длиной 0,06 мм и диаметром 2 мкм, содержат родопсин. Колбочки длиной 0,035 мм и диаметром 6 мкм, трех типов, каждый из которых содержит по одному пигменту — сине-голубому, зеленому и красному. Палочки обеспечивают ночное, скотопическое зрение, колбочки — дневное, фотопическое зрение. Сумеречное, мезопическое зрение осуществляется при функционировании всех фоторецепторов.

Нервные элементы сетчатки образуют три нейрона: первый представлен палочками и колбочками, второй — биполярными, третий — ганглиозными клетками, аксоны которых лишены миелиновой оболочки. Первые два нейрона короткие, а третий длинный и заканчивается в клетках наружного коленчатого тела головного мозга. Важно отметить, что в сетчатке отсутствуют чувствительные нервные окончания.

Главные элементы сетчатки в устойчивом положении поддерживают: внутренняя и наружная пограничные мембраны, а также разнообразные глиальные элементы (волокна Мюллера, паукообразные клетки, астроциты, глиальная ткань и микроглия).

Читайте также:  Окт сетчатки глаза показания

Нормальное функционирование сетчатой оболочки во многом зависит от состояния ее кровообращения. Причины локального порядка могут понижать кровоток в сосудах сетчатки. К ним можно отнести сужение и окклюзию ретинальных и хориоидальных артериол, окклюзию венозных сосудов и др. К таким местным патологическим изменениям сосудов сетчатки присоединяется и влияние повышенного или пониженного офтальмотонуса (экстравазальное давление).

Как известно, для поддержания нормальных условий циркуляции крови по сосудам уровень внутрисосудистого давления должен превышать экстравазальное давление. Кроме того, функционирование сосудистой системы сетчатки может нарушаться при понижении парциального давления кислорода и углекислоты в циркулирующей крови. Имеется также много других причин, нарушающих кровообращение в системе ретинальных сосудов.

Анатомо-физиологические особенности сосудистой системы сетчатки

В 98,1% случаев центральная артерия сетчатки отходит от глазничной артерии и только в единичных случаях — непосредственно от внутренней сонной. Наиболее часто центральная артерия сетчатки отходит от глазничной артерии общим стволом с внутренней задней длинной цилиарной артерией, являясь ветвью второго, третьего и даже четвертого порядка. Эти данные противоречат установившемуся мнению о том, что центральная артерия сетчатки, как правило, является первой ветвью глазничной артерии. Измерения диаметра центральной артерии сетчатки показали, что у места отхождения он составляет 0,4-0,9 мм у взрослых и 0,2-0,4 мм — у новорожденных.

Диаметр артерии не изменяется на всем протяжении от места возникновения до места вхождения в зрительный нерв. Была отмечена извитость дистальных двух третей интраорбитальной части артерии с выраженными s-образными петлями, фиксированными соединительной тканью к оболочке зрительного нерва. Наиболее часто длина центральной артерии сетчатки была 6-10 мм. Как правило, центральная артерия сетчатки вступает в зрительный нерв в области его нижней полуокружности.

Как известно, центральная артерия сетчатки вместе с одноименной веной проникает в зрительный нерв и по его оси доходит до диска зрительного нерва, где артерия и вена отдают основные ветви для кровоснабжения сетчатой оболочки. Ретинальные сосуды, распределяясь по сетчатке, формируют четыре сосудистые зоны, обеспечивающие циркуляцию крови в четырех квадрантах сетчатой оболочки. Варианты в группировке сосудов, после того как они выходят из диска зрительного нерва, зависят от места их первичной бифуркации — в решетчатой пластинке или позади нее.

Кроме того, известны врожденные отклонения в ходе сосудов, которые могут встречаться в нормально функционирующем глазу. Из них следует остановиться на выраженности цилиаретинальных артерий. Последние отделяются от сосудистого круга Цинна и проходят через периферию диска зрительного нерва (чаще всего в темпоральной его половине) в сетчатку. Цилиаретинальная артерия может быть или малозначительной веточкой, или же большим, имеющим принципиальное значение сосудом, который снабжает кровью относительно обширную область сетчатки.

Основные ветви центральной артерии и вены сетчатки проходят от диска к периферии поверхностно на уровне слоя нервных волокон. Здесь сосуды сетчатки дихотомически делятся вплоть до прекапилляров, образуя артериолы первого и второго порядка.

В темпоральной части диска зрительного нерва из верхних и нижних темпоральных сосудов тонкие сосудистые стволы проходят к макулярной области, где заканчиваются около края макулярной зоны. Микроскопическое изучение (Michaelson, Cainpbell, 1940) показало, что эти тонкие ветви заканчиваются в капиллярном сплетении, которое образует вокруг фовеа аркады, при этом видна аваскулярная фовеальная область диаметром около 0.4 мм, снабжающаяся кровью из хориокапиллярного слоя.

Центральная артерия сетчатки является истинной артерией с хорошо развитым мышечным слоем и внутренней эластической мембраной. После прохождения через решетчатую пластинку гистологическая структура ее меняется. Внутренняя эластическая мембрана редуцируется в тонкий слой и полностью исчезает после первой или второй ее бифуркации. Таким образом, все ветви центральной артерии сетчатки следует считать артериолами.

Наиболее существенной для функционирования сетчатки в нормальных условиях (и в патологических) является система ее капилляров.

Калибр артериол и венул сетчатки оказался следующим: проксимальный сегмент артериол и венул 1-го порядка — соответственно около 100 и 150 мк; средний сегмент сосудов (артериолы и венулы 2-го порядка) — около 40-50 мк; мельчайшие видимые сосуды (артериолы и венулы 3-го порядка) — около 20 мк.

В местах разветвления артериол сетчатки были найдены сфинктероподобные структуры. Внутренний диаметр сосуда в области сфинктера сужался до 2 мк. Здесь же отмечалось увеличение гладких мышечных клеток. Конусообразные по форме, они располагались вдоль оси артериол в субэндотелиальном слое (Nomura, 1972).

Исследования Михаелсона и Кемпбелла показали, что в сетчатке имеются два капиллярных сплетения: поверхностное, распространяющееся в слое нервных волокон на уровне ретинальных артериол и вен, и глубокое, которое лежит между внутренним ядерным и наружным плексиформным слоями. Эти два капиллярных сплетения не являются, однако, независимыми один от другого, они связываются интеркоммуникантными капиллярами. Капиллярные анастомозы переходят из одной капиллярной сети в другую.

Отмечается, что каждая капиллярная сеть состоит из истинных капилляров, без преобладания в них венозной или артериальной циркуляции. Глубокая капиллярная сеть сложнее по устройству и более «плотная», чем поверхностная. Это наглядно показано Михаелсоном и Кемпбеллом для экваториальной зоны сетчатки, где особенно четко можно видеть пластинчатую структуру сетчатки, образованную двумя группами слоев — наружным и внутренним. В репрезентативных полях, находящихся в 9-10 мм латеральнее диска зрительного нерва, авторы нашли, что средняя ширина капиллярной сети составляет 54 мк в глубоком сплетении и 65 мк в поверхностном.

Для репрезентативных полей, находящихся в 9-10 мм медиальнее диска зрительного нерва, ширина капиллярной сети соответственно составила 63 и 74 мк. Во всех частях сетчатки капиллярная сеть одинаково варьирует по своей плотности. Вокруг артерий всех калибров имеется зона, свободная от капилляров. Эта зона распространяется по обе стороны от артерии в среднем на 50 мк, на крайней периферии она становится шире и достигает 120 мк. К периферии глубокая капиллярная сеть постепенно исчезает. Остается только простая сеть капилляров широкого калибра.

Архитектоника поверхностной капиллярной сети изучалась Хенкиндом (Henkind, 1967). Это сплетение, как, оказалось, идет радиально от зрительного нерва к заднему полюсу сетчатки. Оно более интенсивно в нижне- и верхне-темпоральных квадрантах, где конфигурация сосудов напоминает двойную дугу Бьерума. Капилляры, выходящие из интраретинальных артерий в перипапиллярной зоне, идут на значительном расстоянии примерно параллельно друг другу, редко анастомозируя, до тех пор, пока они не входят в более глубокие слои сетчатки, где соединяются с венулами.

Ретинальные капилляры можно представить в виде туннелей в компактной глиальной ткани сетчатки. Структура капилляров сетчатки относительно мало отличается от капилляров других органов. Отмечается одиночный слой эндотелиальных клеток без фенестров, окружающих основную мембрану. Эта морфологическая особенность отличает их по пермеабельности от хориокапилляров.

Читайте также:  Можно ли заниматься спортом после отслойки сетчатки

Бетман и Феллоус (Bettman, Fellows, 1956) показали, что некоторые краски, введенные внутривенно, проходят через хориоидальные капилляры, контрастируя хориоидею и наружные слои сетчатки. Однако они не проникают через ретинальные капилляры и поэтому не видны во внутренних слоях сетчатки. Внутренний слой ретинальных капилляров имеет одинаковую толщину. Между слоями основной мембраны в прекапиллярных, капиллярных и посткапиллярных сосудах распределены интрамуральные перициты.

Эти клетки имеют темное ядро и цитоплазматические отростки. Видимо, они происходят (так же, как и эндотелиальные клетки) из зародышевой сосудистой мезенхимы и являются продолжением мышечных клеток артериол, в которых может происходить при патологических условиях их трансформация в интраартериальные шунты (Duke-Elder, 1967). Однако, не выяснено участие перицитов в контрактации капилляров, а также их участие в фагоцитозе. Возможно, что они выполняют различные функции.

Распад эндотелиальных клеток и перицитов расценивается в качестве неспецифического эффекта при дегенерациях, ретинопатиях и окклюзии сосудов. Ацеллюлярные капилляры легко запустевают, циркуляция крови в них прекращается. В итоге они представляют собой только основную мембрану, формирующую так называемые мезодермальные мостики, иногда в них проникают глиальные элементы из клеток Мюллера (Bloodworth, Malitor, 1965). В экспериментах с вазооблитерацией было показано, что перициты ингибируют неоваскулогенез (Эштон, 1963).

Воспалительные изменения сетчатки сопровождаются ее отеком. N. Aschton с соавт. (1959) считают, что локализованный отек сетчатки (интра- или экстрацеллюлярный) сдавливает сосуды, приводя к выраженным изменениям циркуляции крови в них.

yveiti1.jpg
Рис. 1. Схема реоофтальмографической установки

Нарушение кровообращения в сосудистом тракте глаза

Основным методом, определяющим кровоснабжение увеального тракта, в настоящее время следует считать реоофтальмографию. Метод был разработан в 1966 г. Л.А. Кацнельсоном и позволил проводить исследования в условиях, близких к физиологическим. В последующем эта методика была использована многими авторами (А.П. Нестеров, И. Чиберене и др.) для изучения гемодинамики при различных офтальмопатологических состояниях. Принципиальная схема реоофтальмографической установки может быть представлена в следующем виде (рис. 1).

От генератора переменное напряжение подается на пациента, входящего в одно из плеч измерительного моста. При помощи набора конденсаторов и сопротивления мост балансируется, то есть подбирается такое их соотношение, какое имеет место между электродами, приложенными к глазу пациента. Находящаяся между электродами пульсирующая ткань будет периодически менять свой импеданс и, поэтому с частотой пульсации будет колебаться балансировка моста, что выразится увеличением или уменьшением переменного напряжения. Это меняющееся напряжение после детектирования (Д) усиливается усилителем (У) и поступает на записывающее устройство (3). Для записи реоофтальмограммы могут быть использованы электронные приборы.

Увеличение реографического коэффициента отражает повышение уровня кровенаполнения исследуемой области, уменьшение показывает обратное.

Вопрос о состоянии кровообращения в увеальном тракте при воспалительных процессах не является окончательно решенным.

С. Aurichio и Е. Ваrаnу (1958) в эксперименте показали, что при иридоциклите повышается сопротивление к оттоку и одновременно понижается внутриглазное давление. По мнению авторов, это указывает на угнетение образования камерной влаги при увеите. Если у лиц с воспалением сосудистого тракта заболевание протекало с понижением внутриглазного давления, то у таких пациентов было отмечено и снижение секреции водянистой влаги.

Важно отметить, что степень снижения продукции влаги соответствовала фазе воспалительного процесса. Секреция была субнормальной при хронических увеитах и значительно сниженной — при острых, причем такое ее понижение сохранялось в течение многих месяцев после полного купирования воспалительного процесса.

Причину понижения секреции при иридоциклитах В. Becker и R. Shaffer (1961) связывают с повышением проницаемости между кровью и камерной влагой, что приводит, по терминологии авторов, к «утечке в секреторном насосе». Однако следует обратить внимание на данные реоофтальмографии, свидетельствующие о снижении пульсового объема в сосудах цилиарного тела и сопоставить их с установленным фактом уменьшения продукции водянистой влаги.

В эксперименте на кроликах (Л. А. Кацнельсон, А.Я. Бунин, 1968) было показано, что при медикаментозной вазоконстрикции, снижение реоофтальмограммы сопровождалось одновременным понижением продукции водянистой влаги. В других опытах при перевязке сонной артерии было выявлено уменьшение кровенаполнения в сосудистой системе увеального тракта и одновременное понижение секреции на стороне перевязки. Причиной снижения секреции являлось уменьшение кровоснабжения цилиарного тела.

В то же время, после введения сосудорасширяющего препарата (тропафен), выявилась противоположная реакция, при которой вазодилатация приводила к увеличению амплитуды реоофтальмограммы и одновременному повышению продукции водянистой влаги. Эти работы показали взаимосвязь между интенсивностью циркуляции крови в цилиарном теле и продукцией камерной влаги.

Какие же причины при воспалительном процессе в цилиарном теле приводят, казалось бы, к парадоксальной сосудистой реакции — не гиперемии пораженного органа, а снижению в нем интенсивности гемоциркуляции? По этому вопросу в литературе можно найти работы, имеющие косвенное значение. С. А. Шнейдман (1967) показала, что при экспериментально вызванном воспалительном процессе в цилиарном теле после диатермо- или криокоагуляции отмечается значительный отек его ткани не только в зоне коагуляции, но и в рядом расположенных частях.

При этом в области выраженного отека сосуды были резко сужены или вообще не прослеживались. В остальных участках цилиарного тела, также охваченных отеком, не наблюдалось расширения сосудистой сети. Если можно провести аналогию с изменением сосудов сетчатки при ее отеке, то по этому вопросу также встречаются отдельные высказывания. N. Aschton с соавт. (1959) считают, что локализованный отек сетчатки (интра- или экстрацеллюлярный) сдавливает сосуды, приводя к выраженным изменениям циркуляции крови.

Электронно-микроскопические исследования, проведенные J. Gartner (1966) при центральных серозных хориоретинопатиях, позволили обнаружить значительные изменения в стенке сосудов: она утолщалась, и просвет сосудов уменьшался. Таким образом, возникают основания для предположения о том, что развивающийся отек ткани цилиарного тела, который должен иметь место при иридоциклите, приводит к уменьшению его кровенаполнения.

Если это сопоставить с полученным нами выраженным снижением реографического коэффициента при острой фазе иридоциклита и постепенным восстановлением уровня кровенаполнения цилиарного тела при хронической фазе и выздоровлении, то можно предположить, что последнее происходит в результате рассасывания отека.

Кроме того, F. Budden (1962) при увеитах онхоцеркозной этиологии обнаружил круглоклеточную инфильтрацию в хориоидее, особенно выраженную около сосудов. В результате этого может развиться васкулит цилиарного тела, входящий в общую картину иридоциклита, с соответствующими изменениями стенок и просвета сосудистой системы цилиарного тела, что и ведет к снижению уровня циркуляции крови.

Л.А. Кацнельсон, В.Э. Танковский

Опубликовал Константин Моканов

Источник