Глаз сетчатка хрусталик роговица
Орган зрения представлят собой один из важнейших органов чувств, доступных человеку, ведь около 70% информации о внешнем мире человек воспринимает через зрительные анализаторы. Орган зрения или зрительный анализатор – это не только глаз. Собственно глаз – это периферическая часть органа зрения.
Информация, полученная при помощи аппарата глазного яблока, передается по зрительным путям (зрительный нерв, перекрест зрительных нервов, зрительный тракт) сначала в подкорковые центры зрения (наружные коленчатые тела), затем по зрительной лучистости и зрительному пучку Грациоле в высший зрительный центр в затылочных долях головного мозга.
Периферическая часть органа зрения это:
– глазное яблоко,
– защитный аппарат глазного яблока (верхнее и нижнее веки, глазница),
– придаточный аппарат глаза (слезная железа, ее протоки, а также глазодвигательный аппарат, состоящий из мышц).
Глазное яблоко
Глазное яблоко занимает основное место в орбите или глазнице, которая является костным вместилищем глаза и служит также для его защиты. Между глазницей и глазным яблоком находится жировая клетчатка, которая выполняет амортизирующие функции и в ней проходят сосуды, нервы и мышцы. Глазное яблоко весит около 7 грамм.
Глазное яблоко представляет собой сферу диаметром около 25 мм, состоящую из трёх оболочек. Наружная, фиброзная оболочка состоит из непрозрачной склеры толщиной около 1 мм, которая спереди переходит в роговицу.
Снаружи склера покрыта тонкой прозрачной слизистой оболочкой – конъюнктивой. Средняя оболочка называется сосудистой. Из её названия понятно, что она содержит массу сосудов, питающих глазное яблоко. Она образует, в частности, цилиарное тело и радужку. Внутренней оболочкой глаза является сетчатка.
Мышцы глаз
Глаз имеет также придаточный аппарат, в частности, веки и слёзные органы. Движениями глаз управляют шесть мышц – четыре прямые и две косые. По своему строению и функциям глаз можно сравнить с оптической системой, например, фотоаппарата. Изображение на сетчатке (аналог фотоплёнки) образуется в результате преломления световых лучей в системе линз, находящихся в глазу (роговица и хрусталик) (аналог объектива). Рассмотрим, как это происходит подробнее.
Строение переднего отрезка глаза
Свет, попадая в глаз, сначала проходит через роговицу – прозрачную линзу, имеющую куполообразную форму (радиус кривизны примерно 7,5 мм, толщина в центральной части примерно 0,5 мм). В ней отсутствуют кровеносные сосуды и имеется много нервных окончаний, поэтому при повреждениях или воспалении роговицы развивается так называемый роговичный синдром, (слезотечение, светобоязнь и невозможность открыть глаз).
Передняя поверхность роговицы покрыта эпителием, который обладает способностью к регенерации (восстановлению) при повреждении. Глубже располагается строма, состоящая из коллагеновых волокон, а изнутри роговица покрыта одним слоем клеток – эндотелием, который при повреждении не восстанавливается, что приводит к развитию дистрофии роговицы, то есть к нарушению её прозрачности.
Роговица и радужка
Роговица – это линза, на долю которой приходится 40 диоптрий из всех 60 диоптрий общей преломляющей силы глаза. То есть, роговица – самая сильная линза в оптической системе глаза. Это является следствием разницы показателей преломления воздуха, находящегося перед роговицей, и показателя преломления её вещества.
Выйдя из роговицы, свет попадает в заполненную жидкостью так называемую переднюю камеру глаза – пространство между внутренней поверхностью роговицы и радужкой.
Радужка представляет собой диафрагму с отверстием в центре – зрачком, диаметр которого может меняться в зависимости от освещения, регулируя поток света, попадающего в глаз.
Периферия роговицы по всей окружности практически соединяется с радужкой, образуя так называемый угол передней камеры, через анатомические элементы которого (шлеммов канал, трабекула и другие образования, имеющие общее название – дренажные пути глаза), происходит отток жидкости, постоянно циркулирующей в глазу, в венозную систему. За радужкой располагается хрусталик – ещё одна линза, преломляющая свет. Оптическая сила этой линзы меньше, чем у роговицы – она составляет примерно 18-20 диоптрий. Хрусталик по всей окружности имеет похожие на нити связочки (так называемые цинновые), которые соединяются с цилиарными мышцами, располагающимися в стенке глаза. Эти мышцы могут сокращаться и расслабляться. В зависимости от этого цинновы связки могут также расслабляться или натягиваться, в результате чего радиус кривизны хрусталика меняется – поэтому человек может видеть чётко как вблизи, так и вдали.
Эта способность, называемая аккомодацией, с возрастом (после 40 лет) теряется из-за уплотнения вещества хрусталика – зрение вблизи ухудшается.
Хрусталик
Хрусталик по своему строению похож на имеющую одну косточку ягоду– в нём есть оболочка – капсульный мешок, более плотное вещество – ядро (напоминающее косточку), и менее плотное вещество (напоминающее мякоть ягоды) – хрусталиковые массы. В молодости ядро хрусталика мягкое, однако, к 40-50 годам оно уплотняется. Передняя капсула хрусталика обращена к радужке, задняя – к стекловидному телу, а границей между ними служат цинновы связки. Вокруг экватора хрусталика, по всей его окружности располагается цилиарное тело, являющееся частью сосудистой оболочки. Оно имеет отростки, которые вырабатывают внутриглазную жидкость. Эта жидкость через зрачок попадает в переднюю камеру глаза и через угол передней камеры удаляется в венозную систему глаза. Баланс между продукцией и оттоком этой жидкости очень важен, так как его нарушение приводит к развитию глаукомы.
Строение заднего отрезка глаза
Стекловидное тело
За хрусталиком располагается стекловидное тело. Основными функциями стекловидного тела являются поддержание формы и тонуса глазного яблока, проведение света, участие во внутриглазном обмене веществ. Как преломляющая среда оно слабое. При исследовании в проходящем свете нормальное стекловидное тело кажется абсолютно прозрачным.
Оно имеет желеобразную структуру в большинстве случаев, однако иногда оно может разжижаться. С другой стороны, в нем могут появляться уплотнённые участки в виде нитей или глыбок, наличие которых пациент ощущает в виде «мушек» и плавающих точек. В некоторых местах стекловидное тело тесно спаяно с сетчаткой, поэтому при образовании в нём уплотнений, стекловидное тело может тянуть на себя сетчатку, иногда вызывая ее отслойку.
Сетчатка глаза
После прохождения через все вышеперечисленные структуры свет попадает на сетчатку, играющую в глазу роль фотоплёнки. Состоящая из десяти слоёв, сетчатка предназначена для преобразования световой энергии в энергию нервного импульса. Трансформация световой энергии в сетчатке осуществляется благодаря сложному фотохимическому процессу, сопровождающемуся распадом фотореагентов с последующим восстановлением и при участии витамина А и других веществ.
Миллионы маленьких клеток сетчатки, называемые фоторецепторами (палочки и колбочки), превращают световую энергию в энергию нервных импульсов и посылают её в мозг. Общее число колбочек в сетчатке человеческого глаза равно 7 млн, палочек – 130 млн. Палочки обладают очень высокой световой чувствительностью, обеспечивают сумеречное и периферическое зрение. Колбочки выполняют тонкую функцию: центральное форменное зрение и цветоощущение. Наивысшими зрительными функциями обладает центральная часть сетчатки, называемая желтым пятном (macula lutea). Такое название происходит от желтой окраски ямки желтого пятна (fovea).
Центральное углубление (foveola), диаметр которого равен 0,2-0,4 мм – самое тонкое место сетчатки, не более 0,18 мм толщиной. Сетчатка здесь состоит почти исключительно из одних зрительных клеток.
Нервные импульсы собираются с сетчатки зрительным нервом, который состоит примерно из 1 миллиона нервных волокон. Таким образом, информация передаётся в затылочную долю мозга, где анализируется зрительное изображение.
Повреждение, травма или сдавление зрительного нерва на любом уровне приводят к практически необратимой потере зрения даже при нормальном функционировании остальных анатомических структур глаза и прозрачности глазных сред.
Исходя из выше изложенного можно сказать, что орган зрения это тончайшая система, все звенья которой функционируют в тесном взаимодействии друг с другом и нарушение в работе хотя бы одного из них ведет к снижению зрения.
Консультация врача, другие материалы автора
Читайте также о болезнях глаз:
Макулодистрофия
Источник
Первую сою статью я начну с того, что расскажу вам о зрительном органе нашего организма это глаз.
Глаз – орган зрительной системы человека, обладающий способностью воспринимать свет и обеспечивать функцию зрения. У человека через глаз поступает 90% информации из окружающего мира.
Роговица – это природная линза, это передняя, наиболее выпуклая прозрачная часть глазного яблока. Роговица не содержит кровеносных сосудов, но имеет нервные окончания. Помимо защитной функции, она также выполняет функцию преломления света.
Склера – задняя, непрозрачная, белесоватая внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся глазодвигательные мышцы.
Радужная оболочка (радужка) – это «живая» диафрагма. Находится между роговицей и хрусталиком. Имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело, а внутренним ограничивает отверстие зрачка.
Хрусталик («живая линза») — прозрачное эластичное образование в капсуле, имеющее форму двояковыпуклой линзы. Хрусталик обладает интересной особенностью – с помощью связок и мышц вокруг, он может изменять свою кривизну, что, в свою очередь, изменяет направление световых лучей.
Цилиарная мышца – внутренняя парная мышца глаза, которая обеспечивает аккомодацию. С помощью цилиарной мышцы происходит изменение кривизны хрусталика и человек может четко видеть предметы на различных расстояниях.
Стекловидное тело – гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза, за хрусталиком. Поддерживает форму глазного яблока, принимает участие в преломлении световых лучей.
Сетчатка – рецепторная часть зрительного анализатора. Здесь происходят восприятие света и передача информации в центральную нервную систему.
В сетчатке мы можем найти главные для нас элементы:
· Фоторецепторы – палочки и колбочки. Представляют собой нейроны с отростками разной формы. Палочки отвечают за сумеречное и ночное зрение, колбочки – за остроту зрения и цветовосприятие (дневное зрение).
· Диск выхода зрительного нерва – место выхода из глаза зрительного нерва. Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. По зрительному нерву импульсы попадают в наш головной мозг, который и формирует изображение.
· Жёлтое пятно (макула) – находится на сетчатке, как правило, напротив зрачка. При нормальной работе глаза лучи света должны фокусироваться четко на макуле.
За счет чего же движется глаз ?
Он самый подвижный из всех органов человеческого организма.Различные движения глаза, повороты в стороны, вверх, вниз, обеспечивают глазодвигательные мышцы, расположенные в глазнице.Всего их 6: 4 прямые мышцы крепятся к передней части склеры и 2 косые, прикрепляются к задней части склеры.
Зрительные функции.
Зрение — это основная функция глаз, которая складывается из нескольких этапов.
Свет, который отражается от предметов, движется в глаз. Далее он проходит и преломляется через роговицу, хрусталик, стекловидное тело и попадает на сетчатку.
Бинокулярное зрение – это способность зрительной системы воспринимать изображения одновременно двумя глазами, как единый объёмный образ.
Нормальное бинокулярное зрение возможно при определённых условиях:
· согласованная работа всех глазодвигательных мышц, обеспечивающая параллельное положение глазных яблок при взгляде вдаль и соответствующее сведение зрительных осей (конвергенция) при взгляде вблизи, а также правильные ассоциированные движения глаз в направлении рассматриваемого объекта.
· расположение глаз в одной фронтальной и горизонтальной плоскости.
· острота зрения обоих глаз не менее 0,3-0,4, т.е. достаточная для формирования чёткого изображения на сетчатке.
равные величины изображений на сетчатке обоих глаз (при анизометропии до 2,0 Дптр).
Анизометропия – это когда у человека глаза имеют разную рефракцию, например, левый -2.0 Дптр, а правый -1.5 Дптр. В таком примере анизометропия составит 0,5 Дптр.
Конвергенция и дивергенция.
При рассматривании предметов, глаза человека движутся координированно. Такие движения глаз называются содружественными.
При рассматривании близко расположенных предметов зрительные оси глаз сближаются (сводятся) – этот процесс называется конвергенцией.
При рассматривании предметов вдалеке, положение зрительных осей приближается к параллельному – данное разведение осей называется дивергенция.
Аккомодация.
За счет изменения формы хрусталика происходит фокусировка изображения. Хрусталик меняет кривизну в зависимости от расстояния между глазом и предметом (аккомодация глаза).
Аккомодация – это способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза. Количественно аккомодацию характеризуют две величины: длина (расстояние между ближайшей и дальнейшей точками ясного зрения) и объём (разница в показателях рефракции глаз (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения). С возрастом, волокна хрусталика уплотняются, и эластичность уменьшается, вследствие чего способность к аккомодации снижается.
Поле зрения – пространство, воспринимаемое глазом при неподвижном взгляде. Это пространство и по горизонтали, и по вертикали!
Цветоощущение — способность человека различать цвет видимых объектов (дневное видение). За эту функцию отвечают колбочки, расположенные в сетчатке.
Светоощущение — это способность зрительного анализатора воспринимать свет и различать степени его яркости (ночное видение). Это функция, за которую отвечают палочки, расположенные в сетчатке.
Светоадаптация – это способность глаза проявлять световую чувствительность при различной освещённости. Принято различать:
· световую адаптацию, которая протекает в течение первых секунд, затем замедляется и заканчивается к концу 1-й минуты, но может увеличиваться до 3 — 5 минут в зависимости от яркости светового потока, после чего светочувствительность глаза уже не увеличивается;
темновую адаптацию — изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным.
Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.
Острота зрения – это способность глаза распознавать минимальные по размеру объекты на расстоянии более 5 метров. Она, в первую очередь, зависит от правильного соотношения оптической силы глаза к его длине.
Дефекты зрения.
Миопия или близорукость — дефект зрения, при котором изображение формируется не на сетчатке, а перед ней. Коррекция миопии осуществляется рассеивающими (отрицательными) линзами.
Гиперметропия или дальнозоркость — дефект зрения, при котором изображение формируется за сетчаткой. Коррекция гиперметропии осуществляется собирающими (положительными) линзами.
Астигматизм — дефект зрения, возникающий вследствие неправильной (не сферичной) формы роговицы (реже — хрусталика). Коррекция осуществляется цилиндрическими очковыми линзами.
Пресбиопия — возрастное ослабление аккомодации глаза.
Коррекция, как правило, осуществляется офисными или прогрессивными линзами (самый удобный и современный способ). Как уже говорили выше, с возрастом волокна хрусталика уплотняются, а эластичность уменьшается, вследствие чего снижается способность к аккомодации.
P.S.
Материалы взяты из личной библиотеки.
Ставьте лайки и ждите новых статей про оптику.
Источник
К началу раздела
Глаза, роговица, сетчатка, зрительный нерв. Когда люди хотят объяснить, как они видят, глаз обычно сравнивают с прекрасно сконструированным фотоаппаратом, однако, чтобы полностью понять, как внешний мир отражается в крошечной камере глаза, нужно обратиться к первоосновам этого процесса.
Для понимания природы света лучше всего считать его передающей средой. Исходя из любого источника, свет отражается от предметов во всех направлениях, унося с собой возможность для предметов быть видимыми.
Другой важный фактор, касающийся характеристики света,— это способность обычно прямых лучей света преломляться при прохождении через определенную среду, например, через стеклянную линзу специальной формы в фотоаппарате или через линзу, состоящую из тканей, в человеческом глазе.
Более того, степень преломления можно регулировать с помощью формы линзы. Лучи света можно сконцентрировать, чтобы получить крошечные, но точные изображения крупных предметов.
Роговица
Когда луч света падает на глаз, вначале он встречает это круглое прозрачное окно, называемое роговицей; роговица — первая из двух линз глаза. Это сильная линза с неподвижным фокусом. Оптическая сила роговицы составляет до двух третей общей оптической силы глаза. При этом роговица имеет толщину всего полмиллиметра в центре и один миллиметр в том месте, где она соединяется с белком глаза, называемым склерой.
Роговица состоит из пяти слоев. Снаружи находится слой, толщиной в пять клеток, называемый эпителием, он соответствует коже тела. Под ним находится эластичный, похожий на волокно слой, известный как слой Боумана. Затем идет основной слой (строма), состоящий из коллагена. Это самая плотная часть роговицы. Строма помогает уберечь роговицу от инфекции за счет содержащихся в ней различных антиинфекционных антигенов: считается, что строма контролирует возможные воспаления в роговице.
За слоем стромы находится другой слой, толщиной в одну клетку, называемый эндотелием. Этот тонкий слой обеспечивает прозрачность роговицы и поддерживает баланс водного обмена между глазом и роговицей. Однажды сформировавшись, клетки этого слоя не могут обновляться, и поэтому травма или заболевание эндотелия могут вызвать постоянное нарушение зрения. Последний слой, который называется мембраной Десцемста, является эластичным.
Слезная пленка покрывает эпителий. Без слез роговица не имела бы защиты против бактериальных микроорганизмов, загрязнения и пыли. Слезная пленка создает также оптический слой — без слез эпителий потерял бы свою прозрачность и помутнел.
Пройдя сквозь роговицу, луч света попадает в первую из двух камер внутри глаза — переднюю камеру. Она наполнена водянистой — внутриглазной — жидкостью, которая постоянно обменивается.
Сосудистая оболочка глазного яблока
Сосудистая оболочка глазного яблока — это участок, который состоит из трех четко различимых структур, расположенных в центре глазного яблока: собственно сосудистая оболочка глаза, ресничное (цилиарное) тело и радужная оболочка глаза. Эти структуры вместе иногда называют увеальным трактом.
Собственно сосудистая оболочка представляет собой топкий покров из мембран между внешней защитной склерой и сетчаткой. Эта мембрана богата кровеносными сосудами, которые питают сетчатку и создают сложную решетчатую структуру во всем глазе. В такой решетке есть опорная ткань, содержащая разное количество пигмента, что не позволяет свету метаться по задней стенке глаза, создавая спутанные образы.
Ресничное тело состоит из заостренных участков увеального тракта в самой передней части глаза. Его роль — изменять форму хрусталика движением цилиарной мышцы, позволяя человеку сфокусировать взгляд на ближайших объектах, а также вырабатывать внутриглазную жидкость, которая циркулирует в камере и использование некоторых лекарств также заставляют зрачок глаза расширяться или сужаться.
Сразу позади радужки находится мягкий, эластичный, прозрачный хрусталик. Он сравнительно невелик, так как большую часть работы за него делает роговица.
Стекловидное тело и сетчатка
Позади хрусталика находится главная — внутренняя — камера глаза. Она наполнена веществом, которое называется стекловидным телом, имеющим желеподобную структуру; это вещество делает глаз твердым и эластичным. Через центр камеры проходит стекловидный канал — остатки канала, несшего артерию в период внутриутробного развития.
Изогнутая внутренняя часть глазного яблока выстлана по всей внутренней камере светочувствительным слоем, который называется сетчаткой. Она состоит из двух различных типов светочувствительных клеток, называемых по их форме палочками и колбочками.
Палочки чувствительны к малоинтенсивному свету и не различают цвета, что делают за них колбочки. Колбочки также отвечают за прозрачность: их особенно много в задней части глаза, на участке, известном как ямка, или пятно. Тут же хрусталик фокусирует самый четкий образ, и именно там человек видит лучше всего. Окружающая ямку, или пятно, сетчатка дает четкие образы, но ближе к ее краям появляется периферическое зрение, когда человек видит «наполовину».
Вместе центральное зрение и периферическое зрение создают целостную картину окружающего мира.
Зрительный нерв
Каждая светочувствительная клетка в сетчатке соединена нервом с головным мозгом, где вся информация об образах, цвете и форме собирается и обрабатывается. Все эти нервные волокна собираются вместе в задней части глаза и образуют один главный «кабель», известный как зрительный нерв. Он выходит из глазного яблока через костный туннель в черепе и вновь возникает чуть ниже головного мозга в области гипофиза, чтобы присоединиться ко второму зрительному нерву.
Нервы с обеих сторон затем пересекаются, так что часть информации от левого глаза поступает в правую половину мозга и наоборот. Нервы височной стороны каждой сетчатки не пересекаются и остаются па той же половине головного мозга, тогда как волокна из той части глаза, которая выполняет основную работу зрения, идут в разные стороны мозга.
Зрительный нерв — не что иное, как пучок нервных волокон, несущих мельчайшие электрические импульсы по крошечным кабелям, каждый из которых изолирован от соседнего слоем миелина. В центре главного кабеля находится крупная артерия, идущая по всей его длине. Ее называют центральной ретинальной артерией. Эта артерия возникает в задней части глаза, и ее капилляры покрывают всю поверхность сетчатки. Существует соответствующая вена, которая идет в обратном направлении по зрительному нерву рядом с центральной ретинальной артерией и уносит кровь с сетчатки.
Нервы, идущие от сетчатки,— чувствительные нервы; в отличие от двигательных нервов, которые имеют только одно соединение на своем пути к головному мозгу, зрительные нервы соединяются несколько раз. Первая встреча происходит как раз позади той точки, где сенсорная информация от разных глаз меняется местами. Эта точка называется зрительным перекрестом, она находится близко к гипофизу. Непосредственно за этим перекрестком находится первый узел связи, он называется латеральным коленчатым телом. Здесь информация из левого глаза и правого глаза меняется местами еще раз. Функция этого соединения связана с рефлексами зрачков.
Из латерального коленчатого тела нервы веером расходятся на обе стороны вокруг височной части головного мозга, образуя зрительную лучистость. Затем они слегка поворачиваются и собираются вместе, чтобы пройти через главный «коммутатор» — внутреннюю капсулу, где концентрируется вся двигательная и сенсорная информация, снабжающая тело. Отсюда нервы проходят в заднюю часть головного мозга к зрительной зоне коры головного мозга.
Источник