Ганглионарные клетки сетчатки глаза
Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки (биполярных, горизонтальных, амакриновых). В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну (пятно Мариотта), собираются в зрительный нерв и направляются в мозг. Аксоны ганглионарных клеток не миелинизированы при прохождении сетчатки, чтобы не препятствовать прохождению света. Далее они покрыты миелиновой оболочкой.
Ганглионарные клетки завершают «трёхнейронную рецепторно-проводящую систему сетчатки»: фоторецептор — биполярный нейрон — ганглионарная клетка.
Функции ганглионарных клеток[править | править код]
Клетки сетчатки связаны между собой сложной сетью возбуждающих, подавляющих и двунаправленных сигнальных связей. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы — биполяры — ганглионарные клетки), так и по латеральным путям (фоторецепторы — горизонтальные клетки — биполяры — амакриновые клетки — ганглионарные клетки).
Рецептивные поля[править | править код]
На одну ганглионарную клетку приходится от одного до сотни биполярных нейронов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от нескольких до нескольких тысяч фоторецепторов. Каждая ганглионарная клетка суммирует сигналы от большого числа фоторецепторов, что повышает световую чувствительность, но уменьшает разрешение. Фоторецепторы, соединенные с одной ганглионарной клеткой, образуют её рецептивное поле. Рецептивные поля ганглионарных клеток подразделяются на простые и сложные. Простые поля — имеют концентрическую структуру, подобно полям биполярных нейронов. Сложные — разделяются на несколько различных функциональных зон. Рецептивные поля могут перестраиваться, адаптируясь к уровню освещённости и характеристикам световых стимулов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от единиц до десятков тысяч фоторецепторов (палочек и колбочек). В свою очередь, один фоторецептор через биполярные нейроны может быть связан с десятками ганглионарных клеток. В среднем на 100 фоторецепторных клеток приходится одна ганглионарная (т.е., их от 1.2 до 1.5 млн). Чем ближе к центральной ямке глаза, тем меньше фоторецепторов приходится на одну ганглионарную клетку. Поэтому у людей слабое периферическое зрение. В районе центральной ямки, наоборот, высокое разрешение, но менее высокая светочувствительность, поскольку здесь каждый фоторецептор (колбочка) соединен с одной биполярной (карликовой) клеткой, которая в свою очередь соединена лишь с одной ганглионарной.
Типы ганглионарных клеток[править | править код]
Существует всего 18 типов ганглионарных клеток сетчатки.
Большинство относится к трем типам:
1. Парвоганглионарные клетки — карликовые клетки (около 80% от числа всех ганглионарных клеток сетчатки), имеющие средний размер тела и маленькое дерево дендритов, входят в карликовый путь (чувствительный путь, ведущий от глаза к четверохолмию) и связаны с парвоцеллюлярными (мелкоклеточными) слоями латеральных коленчатых тел. С этими клетками связывают высокую остроту зрения и цветовое зрение.
2. Магноклетки — (около 10%) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими телами и большим разветвлением дендритов, которые проецируются в крупноклеточные слои латеральных коленчатых тел. Отвечают за востриятие движущихся объектов. Имеют большие рецепторные поля.
3. Кониоцеллюлярные клетки очень мелкие, составляют от 8 до 10% всех ганглионарных клеток сетчатки. Получают сигналы от среднего количества фоторецепторов. Имеют очень большие рецептивные поля. Всегда ON для колбочек синего цвета и OFF для красного и зеленого.
Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отвечают на световое раздражение деполяризацией или гиперполяризацией соответственно. Дендриты клеток с on-центром разветвляются в подуровне а (пигментном эпителии?), с off-центром в подуровне G (ганглионарном слое?) внутреннего сетчатого слоя. Цветовой канал связан с красным, зеленым и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ганглионарных on/off-клеток относится к карликовому пути, то синий тип не относится к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя
Светочувствительные ганглионарные клетки[править | править код]
В 1991 году были открыты особые светочувствительные ганглионарные клетки типа ipRGC (intrinsically photosensitive retinal ganglion cells), или mRGC (melanopsin-containing retinal ganglion cells). Они, в отличие от ранее известных ганглионарных клеток, содержат светочувствительный пигмент меланопсин, отличающийся от других фоточувствительных пигментов глаза: родопсина палочек и йодопсина колбочек. И этим они отличаются от других ганглионарных клеток, находящихся в сетчатке глаза, которые не умеют реагировать непосредственно на свет.
Эти светочувствительные ганглионарные клетки — новый, третий тип фоторецепторов сетчатки глаза, помимо известных уже в течение 200 лет палочек и колбочек. Они напрямую возбуждаются под действием света даже при блокировании «классических» фоторецепторов глаза — палочек и колбочек.
Нервные пути от этих ганглиозных (ганглионарных) клеток ведут порождённое в них светом возбуждение от сетчатки к гипоталамусу тремя разными путями, обеспечивая световое управление циркадными ритмами, а также по отдельному нервному пути обеспечивают реакцию сужения зрачка на свет.
Литература[править | править код]
- Ноздрачёв А. Д., Баженов Ю. И., Баранникова И. А., Батуев А. С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А. Д. Ноздрачёва. СПб.: Лань, 2001. 1088 с.
Ссылки[править | править код]
- Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System
- Photosensitive ganglion cells
- Vision beyond image formation: The role of melanopsin cells in regulating mammalian physiology
- Blind Mice Can «See» Thanks To Special Retinal Cells
- Фоторецепторы и фоторецепция
[1]
[2]
[3]
[4]
[5]
Источник
Свет – это не просто понятие светлого и темного, свет – это источник и носитель всей зрительной информации. Способность воспринимать свет играет особую роль в регуляции биологических ритмов организма. Поэтому для организма очень важна возможность восприятия света, что осуществляется при помощи сложнейше организованных органов зрения – глаз. Благодаря точной работе всех частей глаз способен преобразовывать в нервный импульс и передавать в головной мозг полученную световую и цветовую информацию. Большую роль в этом играют ганглиозные клетки сетчатки. Чтобы хоть немного понять, что они из себя представляют и какую выполняют роль, нужно иметь элементарные представления об устройстве глаза.
Строение глаза
Основные элементы, составляющие глаз человека, – это роговица, радужная оболочка со зрачком, хрусталик, стекловидное тело, сетчатка, зрительный нерв. Роговица – блестящая прозрачная часть глазной оболочки, в которой отсутствуют сосуды. Обладает определенной чувствительностью, преломляет проходящие световые лучи. Вместе с этим роговица выполняет две основные функции – защищает глаз, создает опору благодаря своей прочности.
Радужная оболочка располагается непосредственно за роговицей, характеризуется особым окрасом с уникальным рисунком, в его центре расположен зрачок – круглое регулируемое отверстие.
Цвет радужной оболочки зависит от количества содержащегося в ней меланина – пигмента, защищающего глаза от избытка солнечного света: может быть от светло-голубого до темно-коричневого.
Сразу за зрачком располагается хрусталик – своеобразная линза, участвующая в процессе фокусирования взгляда на предметах, находящихся на различном расстоянии от нас.
Хрусталик проводит свет от радужки к сетчатке и выступает в роли преграды на пути к стекловидному телу и сетчатке для инфекции при воспалительных процессах. За хрусталиком располагается большая шарообразная полость, заполненная прозрачным гелем под названием стекловидное тело. Основные функции данной структуры – проведение света к сетчатке за счет своей прозрачности, стабилизация давления внутри глаза и компенсация тех перепадов, возникающих из-за резких движений, ударов или травм, так как гелеобразная структура сглаживает все скачки.
Сетчатка – выстилающая поверхность глазного яблока изнутри чувствительная оболочка. Ее основная функция – формирование картинки, изображения, то есть отражение светового и цветового восприятия.
Исходящие из чувствительных клеток нервные волокна создают зрительный нерв, выходящий из задней стенки глазного яблока и передающий изображение непосредственно в соответствующий отдел головного мозга.
Поэтому сетчатка играет огромную роль: осуществляет передачу получаемой информации в мозг. Рассмотрим подробнее строение этого участка глаза и роль ганглионарных (ганглиозных) клеток в передаче световых импульсов.
Строение сетчатки
Сетчатка, лат. retina, выстилающая внутреннюю поверхность глазного яблока, выполняет одну важную функцию – воспринимает получаемую извне световую и цветовую информацию и преобразует ее в нервный импульс, передаваемый в головной мозг, – то есть отвечает за наше зрение. И основные проблемы с ухудшением качества зрения в основном всегда связаны с проблемами сетчатки. Она имеет сложное строение, представляющее собой слои различных клеток с различными функциями. Всего выделяют десять слоев.
Самый внешний слой, граничащий с сосудистой оболочкой, называется пигментированным эпителием. Этот слой участвует в обмене веществ и способствует заживлению появляющихся очагов воспалений. Далее идут слои особых клеток – колбочек и палочек.
Первые отвечают за центральное зрение и восприятие света, вторые – за периферический обзор и сумеречное зрение.
Далее идут слои амакринных, биполярных, горизонтальных и иных клеток.
Ганглиозные клетки, способные генерировать нервные импульсы, граничат со стекловидным телом и нервными волокнами. Они выполняют особую роль по сбору и передаче информации во всех слоях сетчатки.
Типы ганглионарных клеток
Вообще ганглионарные клетки отвечают за образование нервных тканей всего организма. В их структуре имеются аксоны и дендриты, способные принимать и отправлять нервные импульсы. Они встречаются во многих частях нервной системы, но наибольшее их скопление отмечается в надпочечниках и в сетчатке глаза.
Они играют большую роль в нашем зрении: сбор полученной глазными рецепторами информации, преобразование ее в нервные импульсы и дальнейшая передача импульсов через зрительный нерв в головной мозг.
В последние годы проведено множество исследований по изучению ганглиозных клеток у различных животных.
На основе возможных функций создано несколько морфологических классификаций, самая распространенная подразделяется на Y-, X-, W-типы.
Данная классификация предложена Энрот-Кугелем и Робсоном после ряда исследований на кошке.
Около 40 % ганглиозных клеток относится к W-типу, они имеют небольшой размер и передают импульсы с маленькой скоростью. Возбуждение они в основном получают от палочек и располагают широкими восприимчивыми полями. Они особенно восприимчивы к движению и важны для нашего зрения при плохой освещенности.
Х-клетки составляют чуть больше половины ганглиозных клеток сетчатки. Имея средний размер, они передают импульс с чуть более высокой скоростью. Имеют небольшие рецептивные поля, отвечают за восприятие зрительного образа в тонких деталях, и вероятнее всего, отвечают и за цветовое восприятие.
Y-клетки являются самой малой долей от общего числа по своему количеству, всего около 5 %; основная их задача заключается в передаче информации о резких переменах объектов в поле зрения.
По размеру эти клетки самые большие, собирают информацию с больших областей сетчатки и проводят ее с большой скоростью.
Функционально клетки разделяются на два типа:
- Нейроны, которые при попадании света в центр чувствительного поля возбуждаются и затормаживаются при попадании света на боковые, периферийные области.
- Нейроны, замедляющиеся светом в центре рецептивной области и возбуждающиеся при попадании света на периферию.
Источник
Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки (биполярных, горизонтальных, амакриновых). В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну (пятно Мариотта), собираются в зрительный нерв и направляются в мозг. Аксоны ганглионарных клеток не миелинизированы при прохождении сетчатки, чтобы не препятствовать прохождению света. Далее они покрыты миелиновой оболочкой.
Ганглионарные клетки завершают «трёхнейронную рецепторно-проводящую систему сетчатки»: фоторецептор — биполярный нейрон — ганглионарная клетка.
Функции ганглионарных клеток
Клетки сетчатки связаны между собой сложной сетью возбуждающих, подавляющих и двунаправленных сигнальных связей. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы — биполяры — ганглионарные клетки), так и по латеральным путям (фоторецепторы — горизонтальные клетки — биполяры — амакриновые клетки — ганглионарные клетки
Рецептивные поля
На одну ганглионарную клетку приходится от одного до сотни биполярных нейронов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от нескольких до нескольких тысяч фоторецепторов. Каждая ганглионарная клетка суммирует сигналы от большого числа фоторецепторов, что повышает световую чувствительность, но уменьшает разрешение. Фоторецепторы, соединенные с одной ганглионарной клеткой, образуют её рецептивное поле. Рецептивные поля ганглионарных клеток подразделяются на простые и сложные. Простые поля — имеют концентрическую структуру, подобно полям биполярных нейронов. Сложные — разделяются на несколько различных функциональных зон. Рецептивные поля могут перестраиваться, адаптируясь к уровню освещённости и характеристикам световых стимулов. Через биполярные нейроны с одной ганглионарной клеткой может быть связано от единиц до десятков тысяч фоторецепторов (палочек и колбочек). В свою очередь, один фоторецептор через биполярные нейроны может быть связан с десятками ганглионарных клеток. В среднем на 100 фоторецепторных клеток приходится одна ганглионарная (т.е., их от 1.2 до 1.5 млн). Чем ближе к центральной ямке глаза, тем меньше фоторецепторов приходится на одну ганглионарную клетку. Поэтому у людей слабое периферическое зрение. В районе центральной ямки, наоборот, высокое разрешение, но менее высокая светочувствительность, поскольку здесь каждый фоторецептор (колбочка) соединен с одной биоплярной (карликовой) клеткой, которая в свою очередь соединена лишь с одной ганглионарной.
Типы ганглионарных клеток
Существует всего 18 типов ганглионарных клеток сетчатки.
Большинство относится к трем типам:
1. Парвоганглионарные клетки — карликовые клетки (около 80% от числа всех ганглионарных клеток сетчатки), имеющие средний размер тела и маленькое дерево дендритов, входят в карликовый путь (чувствительный путь, ведущий от глаза к четверохолмию) и связаны с парвоцеллюлярными (мелкоклеточными) слоями латеральных коленчатых тел. С этими клетками связывают высокую остроту зрения и цветовое зрение.
2. Магноклетки — (около 10%) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими телами и большим разветвлением дендритов, которые проецируются в крупноклеточные слои латеральных коленчатых тел. Отвечают за востриятие движущихся объектов. Имеют большие рецепторные поля.
3. Кониоцеллюлярные клетки очень мелкие, составляют от 8 до 10% всех ганглионарных клеток сетчатки. Получают сигналы от среднего количества фоторецепторов. Имеют очень большие рецептивные поля. Всегда ON для колбочек синего цвета и OFF для красного и зеленого.
Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отвечают на световое раздражение деполяризацией или гиперполяризацией соответственно. Дендриты клеток с on-центром разветвляются в подуровне а (пигментном эпителии?), с off-центром в подуровне G (ганглионарном слое?) внутреннего сетчатого слоя. Цветовой канал связан с красным, зеленым и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ганглионарных on/off-клеток относится к карликовому пути, то синий тип не относится к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя
Светочувствительные ганглионарные клетки
В 1991 году были открыты особые светочувствительные ганглионарные клетки типа ipRGC (intrinsically photosensitive retinal ganglion cells), или mRGC (melanopsin-containing retinal ganglion cells). Они, в отличие от ранее известных ганглионарных клеток, содержат светочувствительный пигмент меланопсин, отличающийся от других фоточувствительных пигментов глаза: родопсина палочек и йодопсина колбочек. И этим они отличаются от других ганглионарных клеток, находящихся в сетчатке глаза, которые не умеют реагировать непосредственно на свет.
Эти светочувствительные ганглионарные клетки — новый, третий тип фоторецепторов сетчатки глаза, помимо известных уже в течение 200 лет палочек и колбочек. Они напрямую возбуждаются под действием света даже при блокировании «классических» фоторецепторов глаза — палочек и колбочек.
Нервные пути от этих ганглиозных (ганглионарных) клеток ведут порождённое в них светом возбуждение от сетчатки к гипоталамусу тремя разными путями, обеспечивая световое управление циркадными ритмами, а также по отдельному нервному пути обеспечивают реакцию сужения зрачка на свет.
Напишите отзыв о статье «Ганглионарная клетка»
Литература
- Ноздрачёв А. Д., Баженов Ю. И., Баранникова И. А., Батуев А. С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А. Д. Ноздрачёва. СПб.: Лань, 2001. 1088 с.
Ссылки
- [www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000558/ Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System]
- [en.wikipedia.org/wiki/Melanopsin-containing_ganglion_cell/ Photosensitive ganglion cells]
- [www.bio.jhu.edu/Faculty/Hattar/Default.html/ Vision beyond image formation: The role of melanopsin cells in regulating mammalian physiology]
- [releases.jhu.edu/2010/07/14/blind-mice-can-see-thanks-to-special-retinal-cells/ Blind Mice Can «See» Thanks To Special Retinal Cells]
- [kineziolog.bodhy.ru/content/fotoretseptory-i-fotoretseptsiya/ Фоторецепторы и фоторецепция]
[www.muldyr.ru/a/a/ganglionarnaya_kletka_-_svetochuvstvitelnyie_ganglionarnyie_kletki]
[www.morphology.dp.ua/_mp3/senses2.php]
[ilab.xmedtest.net/?q=node/2680]
[all-clinic.ru/?page=setchatka]
[en.wikipedia.org/w/index.php?title=Retinal_ganglion_cell&oldid=487518644]
Отрывок, характеризующий Ганглионарная клетка
Вскоре после этого Ермолов выдвинулся вперед к Кутузову и почтительно доложил:
– Время не упущено, ваша светлость, неприятель не ушел. Если прикажете наступать? А то гвардия и дыма не увидит.
Кутузов ничего не сказал, но когда ему донесли, что войска Мюрата отступают, он приказал наступленье; но через каждые сто шагов останавливался на три четверти часа.
Все сраженье состояло только в том, что сделали казаки Орлова Денисова; остальные войска лишь напрасно потеряли несколько сот людей.
Вследствие этого сражения Кутузов получил алмазный знак, Бенигсен тоже алмазы и сто тысяч рублей, другие, по чинам соответственно, получили тоже много приятного, и после этого сражения сделаны еще новые перемещения в штабе.
«Вот как у нас всегда делается, все навыворот!» – говорили после Тарутинского сражения русские офицеры и генералы, – точно так же, как и говорят теперь, давая чувствовать, что кто то там глупый делает так, навыворот, а мы бы не так сделали. Но люди, говорящие так, или не знают дела, про которое говорят, или умышленно обманывают себя. Всякое сражение – Тарутинское, Бородинское, Аустерлицкое – всякое совершается не так, как предполагали его распорядители. Это есть существенное условие.
Бесчисленное количество свободных сил (ибо нигде человек не бывает свободнее, как во время сражения, где дело идет о жизни и смерти) влияет на направление сражения, и это направление никогда не может быть известно вперед и никогда не совпадает с направлением какой нибудь одной силы.
Ежели многие, одновременно и разнообразно направленные силы действуют на какое нибудь тело, то направление движения этого тела не может совпадать ни с одной из сил; а будет всегда среднее, кратчайшее направление, то, что в механике выражается диагональю параллелограмма сил.
Ежели в описаниях историков, в особенности французских, мы находим, что у них войны и сражения исполняются по вперед определенному плану, то единственный вывод, который мы можем сделать из этого, состоит в том, что описания эти не верны.
Тарутинское сражение, очевидно, не достигло той цели, которую имел в виду Толь: по порядку ввести по диспозиции в дело войска, и той, которую мог иметь граф Орлов; взять в плен Мюрата, или цели истребления мгновенно всего корпуса, которую могли иметь Бенигсен и другие лица, или цели офицера, желавшего попасть в дело и отличиться, или казака, который хотел приобрести больше добычи, чем он приобрел, и т. д. Но, если целью было то, что действительно совершилось, и то, что для всех русских людей тогда было общим желанием (изгнание французов из России и истребление их армии), то будет совершенно ясно, что Тарутинское сражение, именно вследствие его несообразностей, было то самое, что было нужно в тот период кампании. Трудно и невозможно придумать какой нибудь исход этого сражения, более целесообразный, чем тот, который оно имело. При самом малом напряжении, при величайшей путанице и при самой ничтожной потере были приобретены самые большие результаты во всю кампанию, был сделан переход от отступления к наступлению, была обличена слабость французов и был дан тот толчок, которого только и ожидало наполеоновское войско для начатия бегства.
Наполеон вступает в Москву после блестящей победы de la Moskowa; сомнения в победе не может быть, так как поле сражения остается за французами. Русские отступают и отдают столицу. Москва, наполненная провиантом, оружием, снарядами и несметными богатствами, – в руках Наполеона. Русское войско, вдвое слабейшее французского, в продолжение месяца не делает ни одной попытки нападения. Положение Наполеона самое блестящее. Для того, чтобы двойными силами навалиться на остатки русской армии и истребить ее, для того, чтобы выговорить выгодный мир или, в случае отказа, сделать угрожающее движение на Петербург, для того, чтобы даже, в случае неудачи, вернуться в Смоленск или в Вильну, или остаться в Москве, – для того, одним словом, чтобы удержать то блестящее положение, в котором находилось в то время французское войско, казалось бы, не нужно особенной гениальности. Для этого нужно было сделать самое простое и легкое: не допустить войска до грабежа, заготовить зимние одежды, которых достало бы в Москве на всю армию, и правильно собрать находившийся в Москве более чем на полгода (по показанию французских историков) провиант всему войску. Наполеон, этот гениальнейший из гениев и имевший власть управлять армиею, как утверждают историки, ничего не сделал этого.
Он не только не сделал ничего этого, но, напротив, употребил свою власть на то, чтобы из всех представлявшихся ему путей деятельности выбрать то, что было глупее и пагубнее всего. Из всего, что мог сделать Наполеон: зимовать в Москве, идти на Петербург, идти на Нижний Новгород, идти назад, севернее или южнее, тем путем, которым пошел потом Кутузов, – ну что бы ни придумать, глупее и пагубнее того, что сделал Наполеон, то есть оставаться до октября в Москве, предоставляя войскам грабить город, потом, колеблясь, оставить или не оставить гарнизон, выйти из Москвы, подойти к Кутузову, не начать сражения, пойти вправо, дойти до Малого Ярославца, опять не испытав случайности пробиться, пойти не по той дороге, по которой пошел Кутузов, а пойти назад на Можайск и по разоренной Смоленской дороге, – глупее этого, пагубнее для войска ничего нельзя было придумать, как то и показали последствия. Пускай самые искусные стратегики придумают, представив себе, что цель Наполеона состояла в том, чтобы погубить свою армию, придумают другой ряд действий, который бы с такой же несомненностью и независимостью от всего того, что бы ни предприняли русские войска, погубил бы так совершенно всю французскую армию, как то, что сделал Наполеон.
Гениальный Наполеон сделал это. Но сказать, что Наполеон погубил свою армию потому, что он хотел этого, или потому, что он был очень глуп, было бы точно так же несправедливо, как сказать, что Наполеон довел свои войска до Москвы потому, что он хотел этого, и потому, что он был очень умен и гениален.
В том и другом случае личная деятельность его, не имевшая больше силы, чем личная деятельность каждого солдата, только совпадала с теми законами, по которым совершалось явление.
Совершенно ложно (только потому, что последствия не оправдали деятельности Наполеона) представляют нам историки силы Наполеона ослабевшими в Москве. Он, точно так же, как и прежде, как и после, в 13 м году, употреблял все свое уменье и силы на то, чтобы сделать наилучшее для себя и своей армии. Деятельность Наполеона за это время не менее изумительна, чем в Египте, в Италии, в Австрии и в Пруссии. Мы не знаем верно о том, в какой степени была действительна гениальность Наполеона в Египте, где сорок веков смотрели на его величие, потому что эти все великие подвиги описаны нам только французами. Мы не можем верно судить о его гениальности в Австрии и Пруссии, так как сведения о его деятельности там должны черпать из французских и немецких источников; а непостижимая сдача в плен корпусов без сражений и крепостей без осады должна склонять немцев к признанию гениальности как к единственному объяснению той войны, которая велась в Германии. Но нам признавать его гениальность, чтобы скрыть свой стыд, слава богу, нет причины. Мы заплатили за то, чтоб иметь право просто и прямо смотреть на дело, и мы не уступим этого права.
Источник