Функции пигментных клеток сетчатки
Из сведений об анатомии глаза › Пигментный эпителий и сетчатка глаза
Пигментный эпителий сетчатки обеспечивает множество функций. В начале 19 века исследователи считали, что пигментный эпителий — все лишь непроницаемый фон, предотвращающий рассеивание света при фоторецепции. Спустя 80 лет выяснили, что отделение сенсорной части сетчатки от пигментного эпителия вызывает необратимую потерю зрения. Благодаря этой находке и была установлена значимость пигментного эпителия для процесса фоторецепции. Исследования нашего времени подтвердили взаимосвязь фоторецепторов и клеток пигментного эпителия.
Назначение
Стоит рассмотреть ряд основных функций пигментного эпителия сетчатки
- Эпителий останавливает большие молекулы со стороны хориоидеи;
- Эпителий отвечает за связи сенсорной части сетчатки с пигментным эпителием;
- Абсорбцирует световой поток, отфильтровывая рассеянный свет и увеличивая разрешающую способность глаз;
- Предотвращает прохождение света энергии через склеру;
- Впитывает энергию различных излучателей, вызывая фототермический эффект;
- Захватывает внешние членики палочек и колбочек;
- В процессе гетерофагии перерабатывает элементы структуры указанных палочек и колбочек;
- Обеспечивает процессы превращения, хранения и перемещения витамина А;
- Синтезирует межклеточный матрикс;
- Хранит составляющие для выработки зрительного хроматофора 11-cis Retinal;
- Проводит метаболиты к зрительным клеткам и от них к сосудистой оболочке;
- Перемещает ионы НСО 3,отвечающие за выведение жидкости из субретинального пространства;
- Выводит значительный объем жидкости из стекловидного тела;
- Синтезирует гликозаминогликаны, которые окружают внешние сегменты фоторецепторов.
Топографическая регистрация световой энергии обеспечивается тем, что меланиновые гранулы абсорбируют энергию света посредством внешних сегментов фоторецепторов.
Клетки фоторецепторов окружают отростки клеток пигментного эпителия, которые содержат меланиновые зерна. Благодаря этому каждый рецептор надежно изолирован.
По мере усиления внешнего освещения зерна меланина смещаются в клеточные отростки пигментного эпителия, усиливая степень изоляции фоторецепторов.
Рецепторы, которые находятся на базальной и латеральной поверхностях эпителиальных клеток, отвечают за поглощение и перемещение витамин А внутри глаза.
Причиной развития многих заболеваний (в частности — серозной хориоретинопатии, дистрофии сетчатки и возрастной макулопатии) является как раз дисфункция пигментного эпителия. При диагностике аномалий данные изменения хорошо выражены офтальмоскопически.
Сведения из анатомии
Пигментный эпителий находится между сенсорной частью сетчатки и хориокапиллярным слоем сосудистой оболочки. По своему строению это одинарный слой пигментированных клеток шестиугольной формы. Размеры клеток могут различаться в зависимости от локализации. Клетки пигментного эпителия сетчатки имеют апикальную и базальную части, они
скрепены с апикальной стороны органоидами. Базальная мембрана прилегает к ним с базальной стороны.
Ткань, находящая между хориoкапиллярным слоем сосудистой оболочки и пигментным эпителием называется мембраной Бруха. Часто в ее области при помощи офтальмоскопии
можно выявить друзы, причиной которым — процессы старения или заболеваний.
Мембрана Бруха обеспечивает многие функции — транспорт питательных веществ и воды и функции фильтра. Работа мемебраны нарушается из-за дегенерации пигментного эпителия и макулярной области в ходе естественного старения.
Интерфоторецепторный матрикс — это пространство с сложным химическим составом, находящееся между мембраной фоторецепторов и цитоплазматической мембраной микроворсинок. Вырабатывется это вещество клетками пигментного эпителия. Интерфоторецепторный матрикс явялется часью механизмов, обеспечивающих обмен веществ в сетчатке глаз. Также ои помогает процессам фагоцитоза наружных фоторецепторов. Отслойка сетчатки — типичный случай разрушения структуры матрикса.
В разных участках пигментного эпителиоцита цитоплазма имеет отличающееся ультраструктурное строение. Именно по этой причине цитоплазму клетки условно разделяют на 3 зоны.
Поскольку фагоцитарная активность клеток пигментного эпителия является одной из основных функций, их цитоплазма содержит фаголизосомы.
Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Одна клетка пигментного эпителия кролика в сутки подвергает лизису 2000 дисков в парафовеолярной области сетчатки, 3500 дисков в перифовеолярной области и почти 4000 по периферии сетчатки. Отмечено, что при интенсивном освещении количество фагосом увеличивается. Клетки пигментного эпителия отщепляют наружные членики колбочек таким же образом, как и палочек, но более интенсивно после прекращения освещения. Процесс разрушения наружных члеников колбочек и палочек фоторецепторов и их утилизации является адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата.
Часто в состав цитоплазмы клеток пигментного эпителия входит липофусцин, так называемый «пигмент старения», находящийся во многих тканях организма и по мере старения
только увеличивающийся. Липофусцин образуется при перекисном окислении клеточных компонентов, в частности, липидов. Липофусцин обнаруживается и в пигментном эпителии сетчатки, в клетках заднего полюса. К преклонному возрасту липофусциновые гранулы составляют до 20 % от общего объема эпителиоцитов. Если содержание липофусцина существенно увеличивается к старости, число меланосом при этом наоборот уменьшается. Таким образом, ухудшение зрения с возрастом — вполне закономерный процесс, связанный с изменением баланса химических веществ в структуре глаз.
Вверх
Источник
- 29 Июня, 2018
- Офтальмология
- Николаева Елена
Более 90 % информации человек получает при помощи органов зрения. Наши глаза — это не только зеркало души, это очень сложно организованный оптический аппарат, главная функция которого — фокусирование и проведение света. А непосредственно фотоны света преобразуются в нервные импульсы на уникальной оболочке – сетчатке глаза. Именно она является главной частью глазного яблока. О строении и слоях сетчатки, ее физиологической и функциональной роли в восприятии зрительной информации эта статья.
Общие сведения
Напомним, что глазное яблоко – это орган зрения человека, который имеет очень сложное строение. Основные составляющие его представлены на рисунке. Стекловидное тело, хрусталик и роговица предназначены для фокусирования и проведения фотонов света, а оболочки глаза выполняют функции защиты и питания. И только сетчатка — оболочка глаза, которая выстилает внутреннюю полость, является непосредственно световоспринимающей частью. Это так называемая третья оболочка глаза, и именно нарушения в ее деятельности приводят к серьезным патологиям, вплоть до полной утраты зрения человеком.
Чем мы видим
Сетчатка глаза – это многослойное образование на задней внутренней поверхности глазного яблока, состоящее в основном из нервной ткани, чувствительной к свету. Именно тут создается изображение, которое проектируется на ней при прохождении света через роговицу и хрусталик, преобразуется в нервный импульс, который посылается в наш мозг. А уже в зрительных долях коры головного мозга происходит воспроизводство и анализ всех тех образов, которые составляют наше восприятие реальности.
Наша сетчатка проводит до 100 миллионов измерений в секунду и преобразует их в нервные импульсы. Чувствительность ее настолько велика, что она может зарегистрировать всего несколько фотонов света.
География сетчатки
Строение и функции этой оболочки разные в зависимости от местонахождения. В центре расположена круглая зона диаметром около 2 мм, где находится оптический нерв. В этом месте нет светочувствительных рецепторов, это зона слепого пятна.
Левее слепого пятна на 4,5-5 мм находится фовеа или макула – центральная ямка сетчатки или желтое пятно. На самом деле это пятно диаметром до 5 мм, где нет кровеносных сосудов, но расположено максимальное количество световоспринимающих клеток. Центральная ямка – это всего 5 % оптической сетчатки, но именно она отвечает за наибольшую остроту зрения.
Многослойный пирог, или сколько слоев сетчатки
Эта оболочка похожа на многослойный пирог, каждый слой которого имеет свое строение и свои функции. Для офтальмологов имеет значение одно количество этих слоев, для анатомов – другое. Функционально выделяют 2 слоя – оптическую часть (слой колбочек и палочек) и мозговую часть (световоспринимающие нервные клетки).
В анатомии различают 10 слоев сетчатки, каждый из которых имеет особенности строения и функционирования. Именно их мы и будем описывать в данной статье, разделив на главные (пигментный эпителий и фоторецепторный слой) и дополнительные.
Главные в пироге
Итак, самый наружный слой сетчатки, который непосредственно соприкасается с сосудистой оболочкой глазного яблока и отделен от нее мембраной Бруха, – это пигментный эпителий. Как любой тип эпителия, тут имеются плотно упакованные клетки, шестигранные и организованные в линию. Их особенность – наличие зрительного пурпура. Именно этот пигмент играет важную роль в предохранении фоторецепторов от рассеивания и потерь, бликов и переотражения света. Пигментный слой сетчатки выполняет функции ввода питательных веществ и отвода продуктов метаболизма от всех остальных частей этого пирога, и обеспечивает гемато-ретинальный барьер.
К клеткам пигментного эпителия прилегают светочувствительные клетки – колбочки и палочки. На их строении остановимся чуть подробнее, а главная функция этого слоя сетчатки – преобразование фотонов света в нервные импульсы. Или преобразование энергии световых волн в электрические сигналы.
Глаза внутри
Палочки и колбочки – это фоторецепторы сетчатки нашего глаза и первые нейроны в ее составе.
Палочки по форме похожи на цилиндр и разделены на 4 сегмента: базальный (соединяет нервные клетки друг с другом), связующий (соединяет с ресничками), наружный и внутренний (содержит ядро и митохондрии). В палочках содержится пигмент родопсин, который поглощает свет в области двух диапазонов. Даже один фотон света приводит палочки в возбуждение, именно поэтому они отвечают за само восприятие света и за наше сумеречное зрение. Их примерно 120 миллионов, они распределены по сетчатке практически равномерно. Нет палочек только в желтой ямке.
Колбочки и по форме похожи на колбы. Внутри них находится пигмент йодопсин, который отвечает за восприятие красного, синего и зеленого цветов. Они очень чувствительны к высокой интенсивности света, и поэтому мы не различаем цвета в темноте. Их порядка 7 миллионов, и сконцентрированы они в районе желтого пятна.
Другие клетки сетчатки
Кроме фоторецепторов, сетчатка содержит группу клеток, необходимых для ее функционирования.
Ганглиозные клетки – это нейроны сетчатки, способные к генерации нервных импульсов. Они находятся на границе со стекловидным телом и первыми получают фотоны света. Именно они завершают трехнейронную систему проведения нервного импульса: фоторецепторы – биполярные клетки – ганглиозные клетки.
Биполярные нервные клетки вертикально соединяют посредством синапсов колбочки и палочки с ганглиозными клетками.
Амакриновые интернейроны образуют сеть нейронов 2 порядка и обеспечивают соединение и взаимодействие фоторецепторов и ганглиозных клеток.
Ассоциативные горизонтальные нейроны образуют сплошную сеть переплетений нервных окончаний.
Клетки Мюллера – крупные клетки нервной ткани, которые заполняют пространство между нейронами и образуют нейроглию.
Дополнительные слои
За слоем с фоторецепторами идут слои, без которых работа всего световоспринимающего аппарата невозможна:
- Наружная пограничная, или мембрана Везхова, разделяет слои друг от друга и необходима для обеспечения трансформации энергии химических связей в нервный импульс.
- Наружный ядерный слой содержит ядра колбочек и палочек.
- Наружный сетчатый слой (плексиформный) образован отростками фоторецепторов и биполярных нейронов.
- Внутренний слой сетчатки содержит ядра биполярных нейронов.
- Во внутреннем ретикулярном слое располагаются клетки, которые ограничивают светочувствительность сетчатки. Именно тут проходит граница между частями сетчатки, где есть сосуды и где их нет. И это последняя ступенька в обработке информации перед направлением ее в мозг.
- Ганглиозный многополярный слой. Наибольшая его толщина в пять рядов клеток в районе центральной ямки сетчатки.
- Волокнистый слой с волокнами зрительного нерва.
- Последний слой – внутренняя мембрана, которая образована нейроглиальными (соединительными) клетками Мюллера и непосредственно прилегает к стекловидному телу.
Единая функциональная система
Для понимания функций слоев сетчатки, необходимо рассматривать глаз как единую и целостную оптическую систему. Попадающий в него свет проходит несколько преобразований. Сначала уменьшается процент рассеивания, происходит коррекция потока. И если хоть одна проводниковая структура имеет патологии, то это неминуемо приводит к ухудшению зрения.
А за корректное восприятие и обработку этого потока отвечает сетчатка с ее фоторецепторами. При нормальном функционировании всех структур глазного яблока обеспечивается цветовоспринимающая, световоспринимающая функции сетчатки и создается объемная картинка окружающего нас мира.
Световыми импульсами активируются зрительные пигменты, они стимулируют возникновение мембранных потенциалов и выделение нейромедиаторов. Все это приводит в возбуждение нейроны глазного дна, и нервные импульсы по глазным нервам несут информацию в наш мозг. И только там уже происходит анализ и ассоциативное восприятие.
Поэтому хоть и воспринимают свет фоторецепторы наших глаз, но собственно «видим» мы именно мозгом.
Сетчатка может заболеть
Как любой орган нашего организма, сетчатка также подвержена возникновению различных патологий. К наиболее распространенным относятся:
- Кровоизлияния в результате разрывов или склеротических процессов сосудов оболочек глазного яблока.
- Хориоретинит – воспалительные процессы различной этиологии сетчатой и сосудистой оболочек.
- Полная или частичная отслойка сетчатки глаза.
- Макулодистрофия – угнетение работы клеток желтой ямки.
- Диабетические ринопатии и дегенеративные процессы в различных слоях сетчатки.
- Различного рода врожденные патологии развития.
Любые патологии в сетчатке приводят к снижению качества жизни и могут привести к потере зрения. Своевременная диагностика и лечение могут помочь избежать негативных последствий для здоровья.
Когда стоит начать беспокоиться
Симптоматика патологий сетчатки не специфическая, и часто пациент долгое время не подозревает о существующей проблеме. Записаться к офтальмологу на обследование следует, если:
- Появилось ощущение снижения общей остроты зрения.
- Появляются вспышки, блики или молнии перед глазами.
- Если поле зрения сузилось.
- Появляются круги или темные пятна перед глазами.
Офтальмолог после осмотра назначит дополнительное обследование, которое включает офтальмоскопию, УЗИ глаз, флуоресцентную ангиографию, оптическую когерентную томографию. После чего может быть поставлен диагноз и начато лечение.
Сберечь зрение можно
Наши глаза требуют от нас заботы каждый день. Соблюдая самые простые рекомендации, мы можем сохранить хорошее зрение:
- Следите за тем, что едите. Витамины А и С, магний и калий укрепляют клетки сетчатки и дают им возможность работать в нормальном режиме. Сбалансированная диета, много фруктов и овощей, зелень помогут вашим глазам чувствовать себя хорошо.
- Прямые солнечные лучи вредят фоторецепторам сетчатки. Поэтому даже зимой необходимо беречь глаза от их прямого попадания. Не многие знают, но сетчатка продолжает формироваться у человека до 12 лет, и родителям стоит уделить особое внимание защите глаз своего ребенка от попадания прямых солнечных лучей. Ведь именно они могут привести к ранней катаракте.
- Работа за компьютером требует особой осторожности. Правило 20/20 (работа/отдых), не менее 50 сантиметров до экрана, наличие защитных средств – и ваши глаза не пострадают. То же самое касается и просмотра телевизора. Кроме того, важно не смотреть на яркий экран в темноте – так в работу включаются разные фоторецепторы, и идет повышенная нагрузка на сетчатку наших глаз.
- Увлажнение важно не только для кожи. Избегайте сухости в глазах, используйте безопасные капли для увлажнения глазного яблока, и ваше зрение сохранит свою остроту надолго.
- Ну и последнее – осмотр у офтальмолога как минимум раз в год никому не навредит, а сможет вовремя предотвратить неприятные последствия патологий глаз.
Источник
Зрительные проводящие пути имеют важнейшее значение в клинической неврологии. Они проходят от сетчатки глаз до затылочных долей коры головного мозга. Большая протяженность путей обусловливает их особенную уязвимость для деми-елинизирующих заболеваний (рассеянный склероз), опухолей мозга или гипофиза, сосудистых поражений в бассейне средней или задней мозговых артерий или черепно-мозговых травм.
К зрительной системе относят: сетчатки, зрительные проводящие пути от сетчаток к стволу мозга и зрительной коре, а также корковые области, выполняющие высшие зрительные функции. В этой главе описаны только сетчатка и зрительные проводящие пути. Высшие зрительные функции обсуждены в главе 29.
Сечатка и зрительные нервы — части центральной нервной системы. Сетчатка эмбриона формируется из выпячивания диэнцефалона — глазного пузырька. Глазной пузырек образует инвагинацию (хрусталик) и становится двуслойным глазным бокалом.
Наружный слой глазного бокала преобразуется в пигментный эпителий зрелой сетчатки. Внутренний (оптический) слой бокала дает начало нейронам сетчатки.
На рисунке ниже показано общее топографическое строение сетчатки эмбриона. Оптический отдел образован тремя главными слоями нейронов: слоем фоторецепторов, который будет прилежать к пигментному слою клеток после резорбции внутрисетчаточного (интраретиналъного) пространства, слоем биполярных нейронов и слоем ганглиозных клеток, которые дают начало зрительному нерву и достигают таламуса и среднего мозга.
Сетчатка эмбриона.
Зеленым и красным цветом показаны палочки и колбочки соответственно.
Обратите внимание на инвертированное положение сетчатки. Свет должен пройти через слой волокон зрительного нерва, слой ганглиозных клеток и слой биполярных нейронов, чтобы достичь фоторецепторов. «Причина» расположения фоторецепторов, при котором они «максимально удалены» от источника их возбуждения (света или фотонов), обусловлена многими факторами. Во-первых, при таком расположении апикальные концы фоторецепторов (содержащие светочувствительный фотопигмент) расположены напротив пигментного слоя сетчатки, который способен поглощать любой рассеянный свет или свет, не реагирующий с фоторецепторными клетками. Во-вторых, клетки пигментного эпителия сетчатки выполняют фагоцитирующую функцию.
Светочувствительный фотопигмент палочек имеет короткий период полураспада, что требует его постоянного восполнения. Новый фотопигмент продуцируется в основании палочки и перемещается к верхушке клетки, старые апикальные компоненты сбрасываются и фагоцитируются пигментными клетками сетчатки, а белки используются заново (колбочки не сбрасывают). Наконец, фоторецепторные клетки имеют высокий уровень метаболизма и в наиболее глубоком отделе сетчатки они располагаются ближе всего к капиллярам сосудистой оболочки (лежащим под пигментным эпителием), обеспечивающим их питание.
В точке наиболее острого зрения — ямочке (фовеоле) — слои биполярных и ганглиозных клеток огибают центральную ямку (фовеа), и свет проходит к фоторецепторам с минимальным рассеянием (см. ниже «Специализация центральной ямки»). Центральная ямка зрелого глаза имеет диаметр около 1,5 мм и расположена в центре желтого пятна (macula lutea) шириной 5 мм, множество фоторецепторов которого содержат желтый пигмент. Центральная ямка — область наиболее острого зрения — расположена на зрительной оси—линии, проведен ной от центра зрительного поля глаза через центр хрусталика к центральной ямке. Для фиксации, или фовеации, объекта взгляд направляют точно на него, чтобы свет, отраженный от центра объекта, зафиксировался на центральной ямке.
Аксоны ганглиозных клеток входят в зрительный нерв через головку зрительного нерва (сосок зрительного нерва), лишенную нейронов сетчатки и образующую физиологическое слепое пятно.
Зрительные поля глаз перекрывают друг друга в двух третях общего поля зрения. Кнаружи от этого бинокулярного поля зрения с каждой стороны расположено монокулярное (височное) серповидное поле зрения. При прохождении через зрачок формируется перевернутое изображение, поэтому объекты в левой половине бинокулярного поля зрения проецируются на правую половину каждой сетчатки, а объекты в верхней части зрительного поля — на нижнюю половину. Такое расположение сохраняется на всем протяжении до зрительной коры затылочной доли.
С клинической точки зрения необходимо учитывать, что зрение—это перекрестное чувство. Зрительное поле с одной стороны зрительной оси регистрируется на зрительной коре противоположной стороны. В сущности, правая зрительная кора «видит левое поле зрения» или пространство, и наоборот. Только половина зрительной информации от каждой сетчатки пересекает зрительный перекрест по той простой причине, что другая половина уже пересекла среднюю линию.
Дефекты поля зрения, обусловленные поражением зрительных проводящих путей, всегда описывают с точки зрения пациента, т.е. в отношении полей зрения, а не в отношении топографии сетчатки.
Строение сетчатки. Помимо расположенных рядами фоторецепторных клеток, биполярных и ганглиозных клеток, показанных на рисунке ниже, в сетчатке находятся также две группы поперечно расположенных нейронов: горизонтальные клетки и амакриновые клетки. Все восемь слоев сетчатки составляют единое целое.
Поперечный срез правого глаза, показана зрительная ось.
Ганглиозные клетки генерируют потенциалы действия, обеспечивающие «необходимую скорость проведения» к таламусу и среднему мозгу. Расстояния между другими клетками очень короткие, поэтому для межклеточного взаимодействия бывает достаточно пассивного электрического заряда (электротонуса) или постепенных изменений мембранного потенциала клетки без образования синаптических контактов и высвобождения нейромедиатора.
1. Фоторецепторы. К фоторецепторным нейронам относят палочки и колбочки.
Палочки функционируют только при сумеречном свете и нечувствительны к цвету (электромагнитное излучение с волнами разной длины). Лишь в небольшом количестве они представлены в наружной части центральной ямки и полностью отсутствуют в ее центре. Колбочки реагируют на яркий свет, восприимчивы к цвету, форме и наиболее многочисленны в центральной ямке (в глазе человека расположено около 130 млн. фоторецепторных клеток; отношение палочек к колбочкам составляет 20:1 во всех отделах за исключением центральной ямки).
Каждая фоторецепторная клетка имеет наружный и внутренний сегменты, а также синаптическое окончание. В наружном сегменте (светочувствительной «органелле») находятся сотни мембранных дисков (у палочек) или мембранных полудисков (в колбочках), в которые упакован зрительный пигмент (родопсин — фотопигмент, поглощающий свет или фотоны и инициирующий каскад молекулярных реакций, приводящий к изменению потенциала фоторецептора и высвобождению нейромедиатора из синаптической области; этот процесс называют фотопреобразованием). Новые диски образуются во внутреннем сегменте палочек и переносятся в наружный сегмент, старые диски удаляются с апикальной области наружного сегмента. Синаптическое окончание контактирует с отростками биполярных и горизонтальных клеток в наружном ретикулярном слое.
Фоторецепторы обладают удивительным свойством гиперполяризации под действием света. В темноте натриевые (Na+) каналы открыты, образуя достаточный положительный электротонус, приводящий к высвобождению нейромедиатора (глутамата) из синаптического окончания к биполярным нейронам. Воздействие света приводит к закрытию натриевых (Na+) каналов, что сопровождается изменением мембранного потенциала фоторецептора, регистрируемого биполярными нейронами. Мри развитии гиперполяризации рецептора высвобождается меньшее количество нейромедиатора, имеющего тормозное действие, а биполярные клетки (и горизонтальные клетки) деполяризуются (возбуждаются). Однако если действие нейромедиатора было бы возбуждающим, происходила бы реполяризация (торможение) данных клеток.
Под действием света происходит гиперполяризация всех палочек, поэтому при высоком уровне освещения их мембранные каналы полностью закрыты, и их вклад в зрение минимален, а зрение обусловлено только функционированием колбочек.
(А) Зрительные поля обоих глаз при фиксации в одной точке. Поле зрения правого глаза окрашено голубым цветом.
(Б) Правое поле зрения. Белая точка обозначает слепое пятно правого глаза.
Слои сетчатки:
(1) Пигментный слой. (2) Фоторецепторный слой.
(3) Наружный ядерный слой. (4) Наружный сетчатый слой.
(5) Внутренний ядерный слой. (6) Внутренний сетчатый слой.
(7) Слой ганглиозных клеток. (8) Слой нервных волокон.
2. Палочковые и колбочковые биполярные нейроны:
— Колбочковые биполярные нейроны. Колбочковые биполярные нейроны бывают двух типов. ON-биполярные нейроны возбуждаются (деполяризуются) под действием света и тормозятся нейромедиатором, высвобождаемым в темноте. Они контактируют с ON-ганглиозными клетками. OFF-биполярные клетки реагируют противоположным образом и образуют контакты с OFF-ганглиозными клетками. Как правило, одна колбочка образует синапс с несколькими колбочковыми биполярными нейронами, однако в центральной ямке их отношение составляет 1:1; каждая контактирует только с одной ганглиозной клеткой.
— Палочковые биполярные нейроны. Палочковые биполярные нейроны активируют ON- и OFF-колбочковые ганглиозные клетки косвенно, через амакриновые клетки Один палочковый биполярный нейрон образует синапсы с 15-30 палочками (дополнительные контакты возникают, если реакция распространяется в более центральные отделы).
3. Горизонтальные клетки. Дендриты горизонтальных клеток образуют контакты с фоторецепторами. От периферических ветвей дендритов берут начало аксоноподобные отростки, создающие тормозные контакты с биполярными нейронами.
Функция горизонтальных клеток — торможение биполярных нейронов кнаружи от непосредственной области возбуждения. Возбужденные биполярные клетки и ганглиозные клетки называют «включенными», а заторможенные — «выключенными».
Схема нервной цепочки сетчатки:
А—амакриновая клетка; К—колбочка; КБ—колбочковый биполярный нейрон;
ГК—ганглиозная клетка; Г—горизонтальная клетка; С—соединение (щелевидный контакт);
П—палочка; ПБ—палочковый биполярный нейрон.
4. Амакриновые клетки. Амакриновые клетки не имеют аксонов. Внешне они напоминают осьминога. Все дендриты отходят с одной стороны клетки. Дендритические ветви контактируют с биполярными нейронами и ганглиозными клетками.
Было выделено более десяти различных морфологических типов амакриновых клеток, а также несколько их нейромедиаторов: ацетилхолин, дофамин, серотонин. К возможным функциям этих клеток относят повышение контрастности и регистрацию движений. Амакриновые клетки преобразуют большое количество палочек из OFF в ON в соответствии с типом ганглиозной клетки.
5. Ганглиозные клетки. Ганглиозные клетки образуют синаптические контакты с их биполярными нейронами во внутреннем сетчатом слое. Типичный ответ ганглиозных клеток на возбуждение биполярных нейронов — «от центра к периферии». К центру рецептивного поля относят прямые контакты ганглиозных клеток с фоторецепторами; периферией рецептивного поля считают соединения с прилежащими фоторецепторами через горизонтальные клетки. ON-ганглиозная клетка возбуждается пучком света и тормозится окружающим кольцом света. Торможение осуществляют горизонтальные клетки. OFF-ганглиозная клетка действует по обратному принципу.
— Кодирование цвета. Существует три типа колбочковых фоторецепторов, отличающихся спектральной чувствительностью.
Первый тип фоторецепторов чувствителен к красному цвету (их также называют L-колбочками, так как они регистрируют свет с большей длиной волны — Long), второй тип — к зеленому (М-колбочки), третий—к голубому (их также обозначают как S-колбочки, они составляют приблизительно 5-10 % общего количества колбочек). Чувствительность зависит от строения зрительного пигмента в каждом из типов клеток. Максимальная стимуляция каждого типа колбочек определяет длина волны, однако они отвечают на весьма широкий спектр длин волн, и все три типа колбочек частично дублируют друг друга. Определение цвета зависит не только от типа колбочек, а обусловлено сравнительной активностью различных типов колбочек на определенную длину волны. Группы клеток каждого типа контактируют с ON- или OFF-ганглиозными клетками (обработка цветовой информации начинается в сетчатке и продолжается в латеральном коленчатом ядре и коре полушарий).
Характерная реакция ганглиозных клеток — цветовое противодействие (один цвет возбуждает группу колбочек и их ганглиозную клетку, тогда как «противоположный» цвет тормозит их или их можно рассматривать как взаимно исключающие).
• Ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для красного, а ганглиозные клетки, «включенные» для красного цвета, «выключены» для зеленого.
• Ганглиозные клетки, «включенные» для синего цвета, «выключены» для желтого, ганглиозные клетки, «включенные» для зеленого цвета, «выключены» для желтого.
• Наконец, аналогичный механизм справедлив для черного и белого цветов, а также для яркости изображения.
— Кодирование черного и белого. Белый цвет — это сочетание зеленого, красного и синего. При ярком освещении его кодируют три типа колбочек, взаимодействующих с общей ганглиозной клеткой. ON- и OFF-ганглиозные клетки участвуют в процессах как черно-белого, так и цветового зрения.
В глубоких сумерках, например при свете звезд, активны только палочковые фоторецепторы, и объекты видны в различных оттенках серого. Палочки подчиняются тем же правилам, что и колбочки и обладают центрально-периферическим антагонизмом в отношении белого и черного, а также контактируют как с ON-, так и с OFF-ганглиозными клетками.
Большинство ганглиозных клеток палочек и колбочек — мелкие (Р-клетки — от parvocellular), имеют небольшие рецепторные поля и отвечают за определение формы и цвета. Лишь малая их часть — крупные клетки (М-клетки — от magnocellular), имеют большие рецепторные поля и отвечают за регистрацию движений в поле зрения.
6. Специализация центральной ямки. Относительная плотность колбочек прогрессивно увеличивается, а их размер прогрессивно уменьшается от края центральной ямки к ее центру. Центральная треть центральной ямки (ямочка, foveola) имеет ширину лишь немного более 100 нм и содержит только карликовые колбочки. Для всех колбочек центральной ямки и карликовых колбочек особенно характерны две специфические анатомические особенности, позволяющие передавать максимальное количество информации о форме и цветовых качествах объекта при его внимательном изучении. Во-первых, более поверхностные слои сетчатки отклоняются кнаружи от центра, а их отростки имеют избыточную длину. Это приводит к тому, что наружные две трети ямочки становятся частично перекрытыми телами биполярных клеток, а внутренняя треть ничем не закрыта; свет, отраженный от объекта попадает на колбочки ямочки без какого-либо рассеяния.
Во-вторых, наличие синаптических контактов в отношении 1:1 между карликовыми колбочками и их биполярными нейронами, а также между ними и ганглиозными клетками улучшает точность центральной передачи. Кнаружи от ямочки степень конвергенции «колбочка => биполярная клетка => ганглиозная клетка» прогрессивно увеличивается.
(А) Горизонтальный срез правого глазного яблока на уровне диска зрительного нерва и центральной ямки.
(Б) Увеличенное изображение рисунка А. Возвратные аксоны огибают центральную ямку, как показано на рисунке В.
(В) Поверхность центральной ямки и окружающей сетчатки. Колбочки расположены с интервалами, чтобы показать «цепочечную» последовательность нейронов.
СБК — слой биполярных клеток; СГК — слой ганглиозных клеток.
— Также рекомендуем «Зрительные проводящие пути: зрительный нерв, зрительный путь, коленчато-шпорный путь, первичная зрительная кора»
Редактор: Искандер Милевски. Дата публикации: 21.11.2018
Источник