Фокусировка изображения на сетчатке
Механизм фокусировки изображения на сетчатке. Процесс образования внутриглазной жидкости
Аккомодация глаза позволяет регулировать рефрактерную силу и изменять путь светового потока. Преломляющую функцию тканей глаза обычно измеряют в единицах оптического преломления, известного как диоптрии. Наибольшая преломляющая система глаза расположена на внешней границе роговицы и имеет фиксированное значение. Способность хрусталика изменять радиус кривизны обеспечивает фокусировку изображения на оптической части сетчатки.
Хрусталик в глазном яблоке поддерживает ресничная (цилиарная) мышца на подвешивающих (цинновых) связках. Когда ресничная мышца расслабляется, эти связки вытягивают хрусталик в форму эллипсоида. Малый радиус кривизны хрусталика позволяет сфокусировать на сетчатке изображение отдаленных объектов. Когда под действием ПСНС ресничная мышца расслабляется, хрусталик приобретает сферическую форму. Кривизна хрусталика увеличивается, и на сетчатке фокусируются объекты, расположенные вблизи. Непрерывное сокращение ресничных мышц обеспечивает адаптацию остроты зрения. Этим объясняется утомление глаз от чтения в течение длительного времени.
Во время адаптации зрения зрачки сужаются, ограничивая попадание лучей света в центр хрусталика. Происходит сферическое отклонение, и таким образом улучшается качество изображения на сетчатке. Адаптация зрачка происходит рефлекторно. Средства, блокирующие адаптацию глаза, называют циклоплегиками. Почти все они являются М-холиноблокаторами. В ресничной мышце нет адренорецепторов, поэтому на кривизну зрачка не влияют ни симпатолитики, ни симпатомиметики.
Зрачки способны к максимальной (около 12 диоптрий) степени адаптации в юношеском возрасте, затем эта способность постепенно уменьшается, поскольку хрусталик становится менее эластичным. К 50 годам аккомодативная способность хрусталика уменьшается до 1 или 2 диоптрий, поэтому пожилым людям для чтения обычно нужны очки. Это явление, называемое пресбиопией (старческая дальнозоркость), — естественное проявление старения.
Процесс образования внутриглазной жидкости. Передняя камера глаза заполнена влагой, называемой внутриглазной жидкостью. Она образуется в сосудах цилиарного тела непрерывно в количестве 3 мл/сут. Эта жидкость сначала попадает в заднюю камеру глаза, затем через зрачок — в переднюю камеру. Большая часть жидкости оттекает в эписклеральные вены через трабекулы и шлеммов канал. Около 10% внутриглазной жидкости всасывается в толще склеры.
Образование и последующий отток внутриглазной жидкости поддерживают внутриглазное давление в нормальном диапазоне от 12 до 20 мм рт. ст. Образование внутриглазной жидкости косвенно связано с давлением крови и кровоснабжением цилиарного тела. Активация а1-адренорецепторов вызывает спазм кровеносных сосудов в цилиарном теле. Активация (3-адренорецепторов увеличивает образование внутриглазной жидкости. а2-Рецепторы уменьшают продукцию внутриглазной жидкости.
— Также рекомендуем «Карбоангидраза. Сокращение гладких мышц и сетчатка»
Оглавление темы «Терапия кожных и глазных болезней»:
1. Системные глюкокортикостероиды при дерматозах. Противомалярийные средства при болезнях кожи
2. Солнцезащитные лекарства. Кожный защитный фактор от солнца
3. Антивирусные лекарственные средства. Местное применение антибиотиков при акне
4. Системное применение антибиотиков при кожных болезнях. Антипаразитарные лекарства при кожных болезнях
5. Репелленты при кожных болезнях. Барьерные лекарственные средства
6. Салициловая кислота и пропиленгликоль. Лекарства для снижения зуда
7. Анатомия глаза. Физиология глаза
8. Механизм фокусировки изображения на сетчатке. Процесс образования внутриглазной жидкости
9. Карбоангидраза. Сокращение гладких мышц и сетчатка
10. Функции различных полей зрения. Болезни органов зрения
Источник
Рецептора
Афферентного проводящего пути
3) зоны коры, куда проецируется данный вид чувствительности—
И. Павлов назвал анализатором.
В современной научной литературе анализатор чаще называют сенсорной системой. В корковом конце анализатора происходят анализ и синтез полученной информации.
Зрительная сенсорная система
Орган зрения — глаз — состоит из глазного яблока и вспомогательного аппарата. Из глазного яблока выходит зрительный нерв, соединяющий его с головным мозгом.
Глазное яблоко имеет форму шара, более выпуклого спереди. Оно лежит в полости глазницы и состоит из внутреннего ядра и окружающих его трех оболочек: наружной, средней и внутренней (рис. 1).
Рис. 1. Горизонтальный разрез глазного яблока и механизм аккомодации (схема) [Косицкий Г. И., 1985]. В левой половине хрусталик (7) уплощен при рассматривании далекого предмета, а справа он стал более выпуклым за счет аккомодационного усилия при рассматривании близкого предмета 1 — склера; 2 — сосудистая оболочка; 3 — сетчатка; 4 — роговица; 5 — передняя камера; 6 — радужка; 7 — хрусталик; 8 — стекловидное тело; 9 — ресничная мышца, ресничные отростки и ресничная связка (циннова); 10 — центральная ямка; 11 — зрительный нерв
ГЛАЗНОЕ ЯБЛОКО
Наружная оболочка называется волокнистой, или фиброзной. Задний отдел ее представляет белочную оболочку, или склеру, которая защищает внутреннее ядро глаза и помогает сохранить его форму. Передний отдел представлен более выпуклой прозрачной роговицей, через которую в глаз проникает свет.
Средняя оболочка богата кровеносными сосудами и потому называется сосудистой. В ней выделяют три части:
переднюю – радужку
среднюю — ресничное тело
заднюю — собственно сосудистую оболочку.
Радужка имеет форму плоского кольца, цвет ее может быть голубой, зеленовато-серый или коричневый в зависимости от количества и характера пигмента. Отверстие в центре радужки — зрачок — способно суживаться и расширяться. Величину зрачка регулируют специальный глазные мышцы, расположенные в толще радужки: сфинктер (суживатель) зрачка и дилататор зрачка, расширяющий зрачок. Кзади от радужки находится ресничное тело — круговой валик, внутренний край которого имеет ресничные отростки. В нем заложена ресничная мышца, сокращение которой через специальную связку передается на хрусталик и он меняет свою кривизну. Собственно сосудистая оболочка — большая задняя часть средней оболочки глазного яблока, содержит черный пигментный слой, который поглощает свет.
Внутренняя оболочка глазного яблока называется сетчаткой, или сетчатой оболочкой. Это светочувствительная часть глаза, которая покрывает изнутри сосудистую оболочку. Она имеет сложное строение. В сетчатке находятся светочувствительные рецепторы — палочки и колбочки.
Внутреннее ядро глазного яблока составляют хрусталик, стекловидное тело и водянистая влага передней и задней камер глаза.
Хрусталик имеет форму двояковыпуклой линзы, он прозрачен и эластичен, расположен позади зрачка. Хрусталик преломляет входящие в глаз световые лучи и фокусирует их на сетчатке. В этом ему помогают роговица и внутриглазные жидкости. При помощи ресничной мышцы хрусталик меняет свою кривизну, принимая форму, необходимую то для «дальнего», то для «ближнего» видения.
Позади хрусталика находится стекловидное тело — прозрачная желеобразная масса.
Полость между роговицей и радужкой составляет переднюю камеру глаза, а между радужкой и хрусталиком — заднюю камеру. Они заполнены прозрачной жидкостью — водянистой влагой и сообщаются между собой через зрачок. Внутренние жидкости глаза находятся под давлением, которое определяют как внутриглазное давление. При повышении его могут возникнуть нарушения зрения. Повышение внутриглазного давления является признаком тяжелого заболевания глаз — глаукомы.
Вспомогательный аппарат глаза состоит из защитных приспособлений, слезного и двигательного аппарата.
К защитным образованиям относятся брови, ресницы и веки. Брови предохраняют глаз от пота, стекающего со лба. Ресницы, находящиеся на свободных краях верхнего и нижнего века, защищают глаза от пыли, снега, дождя. Основу века составляет соединительнотканная пластинка, напоминающая хрящ, снаружи она покрыта кожей, а изнутри — соединительной оболочкой — конъюнктивой. С век конъюнктива переходит на переднюю поверхность глазного яблока, за исключением роговицы. При сомкнутых веках образуется узкое пространство между конъюнктивой век и конъюнктивой глазного яблока — конъюнктивальный мешок.
Слезный аппарат представлен слезной железой и слезовыводящими путями. Слезная железа занимает ямку в верхнем углу латеральной стенки глазницы. Несколько ее протоков открывается в верхний свод конъюнктивального мешка. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезной жидкости в сторону медиального угла глаза способствуют мигательные движения век. Во внутреннем углу глаза слеза скапливается в виде слезного озера, на дне которого виден слезный сосочек. Отсюда через слезные точки (точечные отверстия на внутренних краях верхнего и нижнего век) слеза попадает сначала в слезные канальцы, а затем в слезный мешок. Последний переходит в носослезный проток, по которому слеза попадает в полость носа.
Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые мышцы (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза движутся совместно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза исчерченные и сокращаются произвольно.
Физиология зрения
Светочувствительные рецепторы глаза (фоторецепторы) — колбочки и палочки, располагаются в наружном слое сетчатки. Фоторецепторы контактируют с биполярными нейронами, а те в свою очередь — с ганглиозными. Образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс. Отростки ганглиозных нейронов образуют зрительный нерв.
По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних холмиков пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные (рефлекторные) зрительные центры. От ядер верхних холмиков начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные движения, связанные со зрением. Ядра верхних холмиков также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза.
Адекватным раздражителем для глаза является свет — электромагнитные волны длиной 400 — 750 нм. Более короткие — ультрафиолетовые и более длинные — инфракрасные лучи глазом человека не воспринимаются.
Преломляющий световые лучи аппарат глаза — роговица и хрусталик, фокусирует изображение предметов на сетчатке. Луч света проходит через слой ганглиозных и биполярных клеток и достигает колбочек и палочек. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в Галочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Наружные сегменты погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов.
В сетчатке насчитывают около 7 млн. колбочек и примерно 130 млн. палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность к свету которых в 500 раз меньше,- это аппарат дневного и цветового видения. Цветоощущение, мир красок доступен рыбам, амфибиям, рептилиям и птицам. Доказывается это возможностью выработать у них условные рефлексы на различные цвета. Не воспринимают цвета собаки и копытные животные. Вопреки прочно установившемуся представлению, что быки очень не любят красный цвет, в опытах удалось доказать, что они не могут отличить зеленого, синего и даже черного от красного. Из млекопитающих только обезьяны и люди способны воспринимать цвета.
Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое пятно, в центре его есть углубление — центральная ямка — место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета.
В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки.
Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и оно не принимает участия в зрении.
Построение изображения на сетчатке.
Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение.
Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас «низ» там, куда направлена сила земного притяжения.
Рис. 2. Построение изображения в глазу, а, б — предмет: а’, б’ — его перевернутое и уменьшенное изображение на сетчатке; С — узловая точка, через которую лучи идут без преломления, аα — угол зрения
Острота зрения.
Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются.
Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.
Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.
Поле зрения. Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.
Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь — с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.
Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.
Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.
Поле зрения определяют при помощи особого прибора — периметра (рис. 133), состоящего из полукруга, разделенного на градусы, и подставки для подбородка.
Рис. 3. Определение поля зрения при помощи периметра Форстнера
Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.
Поле зрения наибольшее кнаружи, к виску — 90°, к носу и кверху и книзу — около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.
Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран — сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению равноудаленных предметов. Эта его способность носит название аккомодации.
Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.
С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков — двояковыпуклых линз, которые надевают при чтении.
Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы (рис. 134).
Рис. 4. Рефракция при нормальном зрении (а), при близорукости (б) и дальнозоркости (г). Оптическая коррекция близорукости (в) и дальнозоркости (д) (схема) [Косицкий Г. И., 1985]
Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.
Адаптация глаза.
При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.
Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4 — 6 мин.
При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000 — 400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы — адаптомеры.
Дата добавления: 2017-11-30; просмотров: 5051; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Учись учиться, не учась! 10828 — | 8097 — или читать все…
Источник