Действительное и мнимое изображение на сетчатке глаза
Глаз – орган, отвечающий за зрительное восприятие окружающего мира. Он состоит из глазного яблока, которое при помощи зрительного нерва соединено с определенными мозговыми участками, и вспомогательных аппаратов. К таким аппаратам можно отнести слезные железы, мышечные ткани и веки.
Особенность строения
Глазное яблоко покрыто специальной защитной оболочкой, которая защищает его от различных повреждений, склерой. Внешняя часть такого покрытия имеет прозрачную форму и называется роговицей. Роговидная область, одна из самых чувствительных частей человеческого организма. Даже небольшое воздействие на эту область приводит к тому, что происходит закрытие глаз веками.
Под роговицей находится радужная оболочка, цвет которой может различаться. Между этими двумя слоями расположена специальная жидкость. В строении радужки есть специальное отверстие для зрачка. Его диаметр имеет свойство расширяться и сужаться в зависимости от поступающего количества света. Под зрачком находится оптическая линза, хрусталик, напоминающая своеобразное желе. Его крепление к склере осуществляется при помощи специальных мышц. За оптической линзой глазного яблока расположена область, получившая название — стекловидное тело. Внутри глазного яблока расположен слой, имеющий название, глазное дно. Данный участок покрыт сетчатой оболочкой. Данный слой имеет в своем составе тонкие волокна, являющимся окончанием глазного нерва.
После того как лучи света пройдут сквозь хрусталик, они проникают через стекловидное тело и попадают на внутреннюю очень тонкую оболочку глаза — сетчатку
Как происходит построение изображения
Изображение предмета, формируемое на сетчатке глаза, является процессом совместной работы всех составляющих глазного яблока. Поступающие световые лучи преломляются в оптической среде глазного яблока, воспроизводя на ретине изображения окружающих предметов. Пройдя сквозь все внутренние слои, свет, попадая на зрительные волокна, раздражает их и в определенные мозговые центры передаются сигналы. Благодаря этому процессу, человек способен к зрительному ощущению предметов.
Очень долгое время исследователей волновал вопрос, какое изображение получается на сетчатке глаза. Одним из первых исследователей этой темы стал И. Кеплер. В основе его исследований лежала теория о том, что изображение, построенное на сетчатой оболочке глаза, находится в перевернутом состоянии. Для того чтобы доказать эту теорию, он построил специальный механизм, воспроизведя процесс попадания световых лучей на сетчатую оболочку.
Немногим позже данный эксперимент был повторен французским исследователем Р. Декартом. Для проведения эксперимента он использовал бычий глаз, с удаленным слоем на задней стенке. Этот глаз он поместил на специальном постаменте. В результате на задней стенке глазного яблока, он смог наблюдать перевернутую картинку.
Исходя из этого, следует вполне закономерный вопрос, почему человек видит окружающие предметы правильно, а не в перевернутом виде? Это происходит в результате того, что вся зрительная информация поступает в мозговые центры. Помимо этого, в определенные отделы головного мозга, поступает информация от других органов чувств. В результате анализа, мозг корректирует картинку и человек получает правильную информацию об окружающих его предметах.
Сетчатая оболочка – центральное звено нашего зрительного анализатора
Этот момент был очень точно подмечен поэтом У. Блейком:
Посредством глаза, а не глазом
Смотреть на мир умеет разум.
В начале девятнадцатого века, в Америке, был поставлен интересный эксперимент. Его суть заключалась в следующем. Испытуемый одевал специальные оптические линзы, изображение на которых имело прямое построение. В результате этого:
- зрение экспериментатора полностью перевернулось;
- все окружающие его предметы стали находится кверху ногами.
Продолжительность эксперимента привела к тому, что в результате нарушения зрительных механизмов с другими органами чувств, начала развиваться морская болезнь. Приступы тошноты одолевали ученого в течение трех дней, с момента начала эксперимента. На четвертый день опытов, в результате освоения мозга с данными условиями, зрение вернулось к нормальному состоянию. Задокументировав эти интересные нюансы, экспериментатор снял оптический прибор. Так как работа мозговых центров, была направлена на получение картинки, полученной с помощью прибора, в результате его снятия зрение испытуемого снова перевернулось вверх тормашками. На этот раз его восстановление заняло около двух часов.
Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов
При проведении дальнейших исследований выяснилось, что проявлять такую способность к адаптации, способен лишь мозг человека. Использование таких приборов на обезьянах, привело к тому, что они впадали в коматозное состояние. Это состояние сопровождалось угасанием рефлекторных функций и низкими показателями кровяного давления. В точно такой же ситуации, таких сбоев в работе организма человека не наблюдается.
Довольно интересен тот факт, что и мозг человека не всегда может справиться со всей поступающей зрительной информацией. Когда происходит сбой в работе определенных центров, появляются зрительные иллюзии. В результате чего, рассматриваемый предмет может изменять свою форму и строение.
Существует еще одна интересная отличительная черта зрительных органов. В результате изменения дистанции от оптической линзы до определенной фигуры, изменяется дистанция и до её изображения. Возникает вопрос, в результате чего картинка сохраняет свою четкость, когда человеческий взгляд меняет свой фокус, с предметов, находящихся в значительном удалении, на расположенные более близко.
Результат этого процесса достигается при помощи мышечных тканей, расположенных возле хрусталика глазного яблока. В результате сокращений они изменяют его контуры, изменяя фокусировку зрения. В процессе, когда взгляд сфокусирован на предметах, находящихся в отдалении, данные мышцы находятся в состоянии покоя, что почти не изменяет контур хрусталика. Когда фокусировка взгляда направлена на предметах, расположенных вблизи, мышцы начинают сокращаться, хрусталик искривляется, а сила оптического восприятия увеличивается.
Данная особенность зрительного восприятия получала название аккомодацией. Под этим термином рассматривается тот факт, что зрительные органы способны приспосабливаться к фокусировке на предметах, расположенных на любом удалении.
Долгое рассматривание предметов, расположенных очень близко, может вызвать сильное напряжение зрительных мышц. В результате их усиленной работы, может появиться зрительное утопление. Для того чтобы избежать этого неприятного момента, при чтении или работе за компьютером, расстояние должно составлять не менее четверти метра. Такую дистанцию называют дистанцией ясного зрения.
оптическую систему глаза составляют роговица, хрусталик и стекловидное тело.
Преимущество двух зрительных органов
Наличие двух зрительных органов, существенно увеличивает размеры поля восприятия. Кроме того, появляется возможность различать расстояние, отделяющее предметы от человека. Это происходит потому, что на сетчатой оболочке обоих глаз, происходит разное построение картинки. Так картинка, воспринимаемая левым глазом, соответствует взгляду на предмет с левой стороны. На втором глазу картинка строится прямо противоположно. В зависимости от приближённости предмета, можно оценить разницу в восприятии. Такое построение изображения на сетчатке глаза позволяет различать объемы окружающих предметов.
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2019;
проверки требует 1 правка.
Построение действительных изображений в случае линзы (вверху) и вогнутого зеркала (внизу)
Опти́ческое изображе́ние — картина, получаемая в результате прохождения через оптическую систему световых лучей, отражённых от объекта, или излучённых им[1]. Оптическое изображение воспроизводит контуры и детали этого объекта в виде распределения освещённости[2].
На практике часто меняют масштаб изображения предметов и проецируют его на какую-либо поверхность.
Свойства[править | править код]
Соответствие объекту достигается, когда каждая его точка изображается точкой, хотя бы приблизительно. При этом различают два случая: действительное изображение и мнимое изображение.
- Действительное изображение любой точки создаётся сходящимися лучами в местах их пересечения. Такое изображение можно наблюдать на экране или зарегистрировать на фотоэмульсии или фотоматрице, расположив их в плоскости пересечения лучей[3].
Действительное изображение создаётся такими оптическими системами, как объектив (например, кинопроектора или фотоаппарата) или одна положительная линза. Действительные изображения создаются собирающими линзами и вогнутыми зеркалами.
- Мнимое изображение получается, когда лучи от какой-либо точки после прохождения оптической системы образуют расходящийся пучок. Если их продолжить в противоположную сторону, они пересекутся в одной точке. Совокупность таких точек образует мнимое изображение[3]. Такое изображение невозможно наблюдать на экране или зарегистрировать на светочувствительной поверхности, однако можно преобразовать в действительное с помощью другой оптической системы.
Мнимое изображение создаётся такими оптическими приборами, как бинокль, микроскоп, отрицательная или положительная линза (лупа), а также плоское зеркало.
Во всякой реальной оптической системе неизбежно присутствуют аберрации, в результате чего лучи (или их продолжения) не сходятся идеально в одной точке, и кроме того, максимально близко сходятся не совсем там, где нужно. Изображение получается несколько размытым и геометрически не полностью подобным предмету; возможны и другие дефекты.
Пучок лучей, который расходится из одной точки или сходится в ней, называется гомоцентрическим. Ему соответствует сферическая световая волна. Задача большинства оптических систем — преобразовывать расходящиеся гомоцентрические пучки в гомоцентрические же, тем самым создавая мнимое или действительное изображение, чаще всего, в другом масштабе по отношению к предмету.
Стигматическое изображение (от др.-греч. στίγμα — укол, рубец) — оптическое изображение, каждая точка которого соответствует одной точке изображаемого оптической системой объекта.
Стигматическое изображение не обязательно геометрически подобно изображаемому объекту, но если оно подобно, такое изображение называется идеальным. Это возможно лишь при условии, что в оптической системе отсутствуют или устранены все аберрации, и что возможно пренебречь волновыми свойствами света. Оптическую систему, которая создаёт идеальное изображение, называют идеальной оптической системой. Идеальными можно приближённо считать центрированные системы, в которых изображение получается с помощью монохроматических и параксиальных пучков света.
Хотя глазом человека действительные и мнимые изображения воспринимаются одинаково, при формировании действительного изображения пересечение лучей реальное, и эти реальные лучи могут подействовать, например, на фотоплёнку, вызвав в ней химические преобразования, или быть зафиксированы фотоэлементом.
Мнимое изображение натурального размера, создаваемое зеркалом
Уменьшенное мнимое изображение, даваемое рассеивающей линзой
Увеличенное мнимое изображение, даваемое собирающей линзой
Примечания[править | править код]
Литература[править | править код]
- Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 222, 223. — 447 с.
- Физическая энциклопедия, Т. II. М., «Советская энциклопедия», 1990. (Статья «Изображение оптическое».)
- Яворский Б. М., Детлаф А. А. Справочник по физике. — М.: «Наука», Изд. фирма «Физ.-мат. лит.», 1996.
- Сивухин Д.В. Общий курс физики. Оптика. М., «Наука», 1985.
- Борн. Вольф Основы оптики М., «Наука», 1971.
См. также[править | править код]
Видеоурок: изображение в собирающей линзе
- Изображение
- Абсолютная оптическая система
Источник
Строение глаза очень сложно. Он относится к органам чувств и отвечает за восприятие света. Фоторецепторы могут воспринимать лучи света только в определенном диапазоне длины волн. В основном раздражающее влияние на глаз оказывает свет с длиной волны 400-800 нм. После этого происходит формирование афферентных импульсов, которые поступают далее в центры головного мозга. Так формируются зрительные образы. Глаз выполняет разные функции, например, он может определить форму, величину предметов, расстояние от глаза до объекта, направление движения, освещенность, окрашенность и ряд других параметров.
Преломляющие среды
В строении глазного яблока выделяют две системы. К первой относят оптические среды, которые обладают светопреломляющей способностью. Вторая система включает рецепторный аппарат сетчатки.
Светопреломляющие среды глазного яблока объединяют роговицу, жидкое содержимое передней камеры глаза, хрусталик и стекловидное тело. В зависимости от типа среды, различается коэффициент преломления. В частности, у роговицы этот показатель составляет 1,37, у стеловидного тела и жидкости передней камеры – 1,33, у хрусталика – 1,38, а у его плотного ядра – 1,4. Основным условием нормального зрения является прозрачность светопреломляющих сред.
Фокусное расстояние определяет степень преломления оптической системы, выражающейся в диоприях. Связь в данном случае обратно пропорциональная. Диоптрия подразумевает под собой силу линзы, фокусное расстояние которой составляет 1 метр. Если измерять оптическую силу в диоптриях, то для прозрачных сред глаза она составит 43 для роговицы, а для хрусталика будет изменяться в зависимости от удаленности предмета. Если пациент смотрит вдаль, то она составит 19 (а для всей оптической системы -58), а при максимальном приближении предмета – 33 (для всей оптической системы – 70).
Статическая и динамическая рефракция глаза
Рефракция – это оптическая установка глазного яблока при фокусировке на удаленных предметах.
Если глаз нормальный, то пучок параллельных лучей, идущих от бесконечно далекого предмета, преломляются таким образом, что фокус их совпадает с центральной ямкой сетчатки. Такое глазное яблоко называется эмметропическим. Однако, далеко не всегда человек может похвастаться такими глазами.
Например, близорукость сопровождается увеличением длины глазного яблока (превышает 22,5-23 мм) или увеличением преломляющей силы глаза за счет изменения кривизны хрусталика. При этом параллельный пучок света не попадает на зону макулы, а проецируется перед ней. В результате на плоскость сетчатки попадают уже расходящиеся лучи. В этом случае изображение получается расплывчатым. Глаз называют миопическим. Чтобы изображение стало четким, необходимо передвинуть фокус на плоскость сетчатки. Этого можно достичь в том случае, если пучок света имеет не параллельные, а расходящиеся лучи. Этим можно объяснить тот факт, что близорукий пациент хорошо видит вблизи.
Для контактной коррекции миопии применяют двояковогнутые линзы, способные отодвинуть фокус в зону макулы. Этим можно компенсировать повышенную преломляющую способность вещества хрусталика. Довольно часто миопия носит наследственный характер. При этом пик заболеваемости приходится на школьный возраст и связан с нарушением гигиенических правил. В тяжелых случаях миопия способна вызвать вторичные изменения сетчатки, которые могут сопровождаться значительным снижением зрения и даже слепотой. В связи с этим очень важно вовремя проводить профилактические и лечебные мероприятия, в том числе правильно питаться, заниматься физкультурой, соблюдать гигиенические рекомендации.
Дальнозоркость сопровождается уменьшением длины глаза или снижением коэффициента преломления оптических сред. При этом пучок параллельных лучей от далекого предмета попадает за плоскость сетчатки. В макуле же проецируется участок сходящихся лучей, то есть изображение получается размытым. Глаз называют при этом дальнозорким, то есть гиперметропическим. В отличие от нормального глаза, ближайшая точка ясного видения в этом случае отстоит на некоторое расстояние. Для коррекции гиперметропии можно использовать двояко выпуклые линзы, способные увеличить преломляющую силу глаза. Важно понимать, что истинная врожденная или приобретенная дальнозоркость отличается от пресбиопии (старческой дальнозоркости).
При астигматизме нарушена способность концентрировать лучи света в одной точке, то ест фокус представлен пятном. Связано это с тем, что кривизна хрусталика различается по разным меридианам. При большей преломляющей способности по вертикали, астигматизм принято называть прямым, при увеличении горизонтальной составляющей – обратным. Даже в случае нормального глазного яблока оно несколько астигматично, так как идеально ровной роговицы не бывает. Если рассматривать диск с концентрическими кругами, то возникает незначительное их сплющивание. Если астигматизм приводит к нарушению зрительной функции, то его корректируют с использованием цилиндрических линз, которые располагают в соответствующих меридианах.
Аккомодация глаза
Аккомодация глаза обеспечивает четкое изображение даже при разной удаленности предметов. Эта функция становится возможной, благодаря эластическим свойствам хрусталика, который свободно меняет кривизну, а, следовательно, и преломляющую силу. В связи с этим даже при перемещении объекта лучи, отраженные от него, фокусируются на плоскость сетчатки. Когда человек рассматривает бесконечно отдаленные предметы, ресничная мышца находится в расслабленном состоянии, циннова связка, которая крепится к передней и задней хрусталиковой капсуле, натянута. При натяжении волокон цинновой связки возникает растягивание хрусталика, то есть кривизна его уменьшается. При взгляде вдаль за счет наименьшей кривизны хрусталика, его преломляющая способность также наименьшая. По мере приближения предмета к глазу происходит сокращение ресничной мышцы. В результате циннова связка расслабляется, то есть хрусталик перестает растягиваться. В случае полного расслабления волокон цинновой связки хрусталик под действием силы тяжести опускается примерно на 0,3 мм. В связи эластическими свойствами хрусталиковая линза при отсутствии натяжения становится более выпуклой, а преломляющая сила ее увеличивается.
За сокращение волокон ресничной мышцы отвечает возбуждение парасимпатичесих волокон глазодвигательного нерва, которые реагируют на приток афферентных импульсов в зону среднего мозга.
Если аккомодация не работает, то есть человек смотрит вдаль, то передний радиус кривизны хрусталика составляет 10 мм, при максимальном сокращении ресничной мышцы передний радиус кривизны хрусталика изменяется до 5,3 мм. Изменения заднего радиуса менее значительные: с 6 мм он уменьшается до 5,5 мм.
Аккомодация начинает работать в тот момент, когда предмет приближается на расстояние примерно 65 метров. При этом ресничная мышца переходит из расслабленного состояния в напряженное. Однако при такой удаленности предметов напряжение волокон не велико. Более существенное сокращение мышцы возникает при приближении предмета до 5-10 метров. В дальнейшем степень аккомодации прогрессивно увеличивается до тех пор, пока предмет не выходит из зоны четкой видимости. Наименьшее расстояние, на котором предмет еще виден отчетливо, называется точкой ближайшего ясного видения. В норме дальняя точка ясного видения располагается бесконечно далеко. Интересно, что у птиц и млекопитающих механизм аккомодации сходен с человеческим.
С возрастом происходит снижение эластичности хрусталиковой линзы, при этом амплитуда аккомодации снижается. При этом дальняя точка ясного видения обычно остается на прежнем месте, а ближайшая постепенно отодвигается.
Важно отметить, что при занятиях на близком расстоянии примерно треть аккомодации остается в запасе, поэтому глаз не утомляется.
При старческой дальнозоркости происходит удаления ближайшей точки ясного видения из-за снижения эластичности хрусталика. При пресбиопии уменьшается преломляющая сила хрусталиковой линзы даже при наибольшем усилии аккомодации. В возрасте десяти лет ближайшая точка располагается в 7 см от глаза, в 20 лет смещается на 8,3 см, в 30 лет – до 11 см, к шестидесяти годам она уже сдвигается к 80-100 см.
Построение изображения на сетчатке
Глаз является очень сложной оптической системой. Для изучения его свойств используют упрощенную модель, которую называют редуцированным глазом. Зрительная ось этой модели совпадает с осью обычного глазного яблока и проходит сквозь центры преломляющих сред, попадая в центральную ямку.
В редуцированной модели глаза к преломляющим средам относят только вещество стекловидного тела, в котором отсутствуют главные точки, лежащие в области пересечения преломляющих плоскостей. В истинном глазном яблоке две узловые точки располагаются на расстоянии 0,3 мм друг от друга, их заменяют одной точкой. Луч, который проходит через узловую точку, обязательно должен пройти через сопряженную с ней, покинув ее в параллельном направлении. То есть в редуцированной модели две точки заменены одной, которая помещена на расстоянии в 7,5 мм от поверхности роговицы, то есть в задней трети хрусталика. От сетчатки узловая точка удалена на 15 мм. В случае построения изображения все точки сетчатки рассматриваются как светящиеся. От каждой из них через узловую точку проводится прямая линия.
Изображение, которое формируется на сетчатке уменьшенное, обратное и действительное. Чтобы определить размер на сетчатке, нужно зафиксировать длинное слово, которое напечатано мелким шрифтом. При этом определяют, какое количество букв может различить пациент при полной неподвижности глазного яблока. После этого линейкой измеряют длину букв в миллиметрах. Далее путем геометрических расчетов можно определить длину изображения на сетчатке. Этот размер дает представление о диаметре желтого пятна, которое отвечает за центральное четкое зрение.
Изображение на сетчатке получается обратным, но мы видим предметы прямыми. Связано это с ежедневной тренировкой головного мозга, в частности зрительного анализатора. Чтобы определить положение в пространстве, помимо раздражителей с сетчатки, человек использует возбуждение проприорецепторов мышечного аппарата глаза, а также показания других анализаторов.
Можно сказать, что формирование представлений о положении тела в пространстве основывается на условных рефлексах.
Передача зрительной информации
В последних научных исследованиях было установлено, что в процессе эволюционного развития количество элементов, которые передают информацию с фоторецепторов, увеличивается вместе с числом параллельных цепей афферентных нейронов. Это можно заметить на слуховом анализаторе, но в большей степени именно на зрительном анализаторе.
В зрительном нерве имеется около миллиона нервных волокон. Каждое волокно разделяется на 5-6 частей в промежуточном мозге и заканчивается синапсами в зоне наружного коленчатого тела. При этом каждое волокно на пути от коленчатого тела к большим полушариям головного мозга контактирует с 5000 нейронов, относящихся к зрительному анализатору. Каждый же нейрон зрительного анализатора получает информацию еще от 4000 нейронов. В результате происходит значительное расширение зрительных контактов по направлению к большим полушариям головного мозга.
Фоторецепторы в сетчатке могут передать информацию однократно в тот момент, когда появился новый предмет. Если изображение не изменяется, то в результате адаптации рецепторы перестают возбуждаться, с этим связано то, что информация о статических изображениях не передается в мозг. Также в сетчатке имеются рецепторы, которые передают только изображения предметов, другие же реагируют на движение, появление, исчезновение светового сигнала.
Во время бодрствования по зрительным нервам постоянно предаются афферентные сигналы от фоторецеторов. При разных условиях освещения эти импульсы могут возбуждаться или тормозиться. В зрительном нерве можно выделить три типа волокон. К первому типу относят волокна, которые реагируют только на включение света. Второй тип волокон приводит к торможению афферентных импульсов и реагирует на прекращение освещения. Если повторно включить освещение, то разряд импульсов в этом типе волокон будет тормозиться. Третий тип включает наибольшее количество волокон. Они реагируют как на включение, так и на выключение освещения.
При математическом анализе результатов электрофизиологических исследований установлено, что по пути от сетчатки к зрительному анализатору происходит укрупнение изображения.
Элементами зрительного восприятия являются линии. Первым делом зрительная система выделяет контуры предметов. Чтобы выделить контуры предметов, достаточно врожденных механизмов.
В сетчатке имеется временная и пространственная суммация всех зрительных раздражений, относящихся к рецептивным полям. Число их при нормальном освещении может достигать 800 тысяч, что примерно соответствует количеству волокон в зрительном нерве.
Для регуляции обмена веществ в рецепторах сетчатки имеется ретикулярная формация. Если раздражать ее электрическим током при помощи игольчатых электродов, то изменяется частота афферентных импульсов, которые возникают в фоторецепторах в ответ на вспышку света. Ретикулярная формация воздействует на фоторецепторы через тонкие эфферентные гамма-волокна, которые проникают в сетчатку, а также через проприоцепторный аппарат. Обычно через некоторое время после того, как началось раздражение сетчатки афферентная импульсация внезапно возрастает. Эффект этот может сохраняться длительное время даже после прекращения раздражения. Можно сказать, что возбудимость сетчатки значительно повышают адренергические симпатические нейроны, которые относятся к ретикулярной формации. Их характеризует большой латентный период и длительно последействие.
Рецептивные поля сетчатки представлены двумя типами. К первому относят элементы, которые кодируют самые простые конфигурации образа с учетом отдельных структур. Второй тип отвечает за кодирование конфигурации в целом, за счет их работы происходит укрупнение зрительных образов. Другими словами, статическое кодирование начинается еще на уровне сетчатки. После выхода из сетчатки импульсы поступают в зону наружных коленчатых тел, где и происходит основное кодирование зрительного образа с применением крупных блоков. Также в этой зоне передаются отдельные фрагменты конфигурации изображения, скорость и направление его движения.
На протяжении жизни происходит условно-рефлекторное запоминание зрительных образов, имеющих биологическое значение. В результате рецепторы сетчатки могут предавать отдельные зрительные сигналы, но о методах декодирования пока не известно.
Из центральной ямки выходит примерно 30 тысяч нервных волокон, при помощи которых происходит передача 900 тысяч бит информации за 0,1 секунду. За это же время в зрительной зоне больших полушарий может быть обработано не более 4 бит информации. То есть объем зрительной информации ограничен не сетчаткой, а декодированием в высших центрах зрения.
Источник