Что такое эпителий сетчатки
Из сведений об анатомии глаза › Пигментный эпителий и сетчатка глаза
Пигментный эпителий сетчатки обеспечивает множество функций. В начале 19 века исследователи считали, что пигментный эпителий — все лишь непроницаемый фон, предотвращающий рассеивание света при фоторецепции. Спустя 80 лет выяснили, что отделение сенсорной части сетчатки от пигментного эпителия вызывает необратимую потерю зрения. Благодаря этой находке и была установлена значимость пигментного эпителия для процесса фоторецепции. Исследования нашего времени подтвердили взаимосвязь фоторецепторов и клеток пигментного эпителия.
Назначение
Стоит рассмотреть ряд основных функций пигментного эпителия сетчатки
- Эпителий останавливает большие молекулы со стороны хориоидеи;
- Эпителий отвечает за связи сенсорной части сетчатки с пигментным эпителием;
- Абсорбцирует световой поток, отфильтровывая рассеянный свет и увеличивая разрешающую способность глаз;
- Предотвращает прохождение света энергии через склеру;
- Впитывает энергию различных излучателей, вызывая фототермический эффект;
- Захватывает внешние членики палочек и колбочек;
- В процессе гетерофагии перерабатывает элементы структуры указанных палочек и колбочек;
- Обеспечивает процессы превращения, хранения и перемещения витамина А;
- Синтезирует межклеточный матрикс;
- Хранит составляющие для выработки зрительного хроматофора 11-cis Retinal;
- Проводит метаболиты к зрительным клеткам и от них к сосудистой оболочке;
- Перемещает ионы НСО 3,отвечающие за выведение жидкости из субретинального пространства;
- Выводит значительный объем жидкости из стекловидного тела;
- Синтезирует гликозаминогликаны, которые окружают внешние сегменты фоторецепторов.
Топографическая регистрация световой энергии обеспечивается тем, что меланиновые гранулы абсорбируют энергию света посредством внешних сегментов фоторецепторов.
Клетки фоторецепторов окружают отростки клеток пигментного эпителия, которые содержат меланиновые зерна. Благодаря этому каждый рецептор надежно изолирован.
По мере усиления внешнего освещения зерна меланина смещаются в клеточные отростки пигментного эпителия, усиливая степень изоляции фоторецепторов.
Рецепторы, которые находятся на базальной и латеральной поверхностях эпителиальных клеток, отвечают за поглощение и перемещение витамин А внутри глаза.
Причиной развития многих заболеваний (в частности — серозной хориоретинопатии, дистрофии сетчатки и возрастной макулопатии) является как раз дисфункция пигментного эпителия. При диагностике аномалий данные изменения хорошо выражены офтальмоскопически.
Сведения из анатомии
Пигментный эпителий находится между сенсорной частью сетчатки и хориокапиллярным слоем сосудистой оболочки. По своему строению это одинарный слой пигментированных клеток шестиугольной формы. Размеры клеток могут различаться в зависимости от локализации. Клетки пигментного эпителия сетчатки имеют апикальную и базальную части, они
скрепены с апикальной стороны органоидами. Базальная мембрана прилегает к ним с базальной стороны.
Ткань, находящая между хориoкапиллярным слоем сосудистой оболочки и пигментным эпителием называется мембраной Бруха. Часто в ее области при помощи офтальмоскопии
можно выявить друзы, причиной которым — процессы старения или заболеваний.
Мембрана Бруха обеспечивает многие функции — транспорт питательных веществ и воды и функции фильтра. Работа мемебраны нарушается из-за дегенерации пигментного эпителия и макулярной области в ходе естественного старения.
Интерфоторецепторный матрикс — это пространство с сложным химическим составом, находящееся между мембраной фоторецепторов и цитоплазматической мембраной микроворсинок. Вырабатывется это вещество клетками пигментного эпителия. Интерфоторецепторный матрикс явялется часью механизмов, обеспечивающих обмен веществ в сетчатке глаз. Также ои помогает процессам фагоцитоза наружных фоторецепторов. Отслойка сетчатки — типичный случай разрушения структуры матрикса.
В разных участках пигментного эпителиоцита цитоплазма имеет отличающееся ультраструктурное строение. Именно по этой причине цитоплазму клетки условно разделяют на 3 зоны.
Поскольку фагоцитарная активность клеток пигментного эпителия является одной из основных функций, их цитоплазма содержит фаголизосомы.
Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Одна клетка пигментного эпителия кролика в сутки подвергает лизису 2000 дисков в парафовеолярной области сетчатки, 3500 дисков в перифовеолярной области и почти 4000 по периферии сетчатки. Отмечено, что при интенсивном освещении количество фагосом увеличивается. Клетки пигментного эпителия отщепляют наружные членики колбочек таким же образом, как и палочек, но более интенсивно после прекращения освещения. Процесс разрушения наружных члеников колбочек и палочек фоторецепторов и их утилизации является адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата.
Часто в состав цитоплазмы клеток пигментного эпителия входит липофусцин, так называемый «пигмент старения», находящийся во многих тканях организма и по мере старения
только увеличивающийся. Липофусцин образуется при перекисном окислении клеточных компонентов, в частности, липидов. Липофусцин обнаруживается и в пигментном эпителии сетчатки, в клетках заднего полюса. К преклонному возрасту липофусциновые гранулы составляют до 20 % от общего объема эпителиоцитов. Если содержание липофусцина существенно увеличивается к старости, число меланосом при этом наоборот уменьшается. Таким образом, ухудшение зрения с возрастом — вполне закономерный процесс, связанный с изменением баланса химических веществ в структуре глаз.
Вверх
Источник
Эпителий роговицы — наружный слой роговой оболочки глаза. У человека эпителий расположен над слоем Боумена, у ряда других млекопитающих — непосредственно над стромой роговицы. Эпителий состоит из нескольких слоёв эпителиальных клеток: у человека в центральной зоне насчитывают пять слоёв, на периферии — до 10.[2] Эпителий роговицы уникален своей прозрачностью и отсутствием кровеносных сосудов; на периферии он сменяется лимбом роговицы, за которым следует конъюнктива.
В эпителии роговицы млекопитающих отмечается крайне высокая, по сравнению с другими тканями, концентрация ацетилхолина.[3] По данным одного сравнительного исследования, это характерно лишь для дневных млекопитающих, у ночных же ацетилхолина в эпителии не было обнаружено.[4]
Также в эпителии велико содержание витамина C.[5]
Поверхность эпителия у разных видов испещрена характерными микроструктурами — микроволосками, микрогребнями, микроскладками и даже микроотверстиями. Характер структур определяется средой обитания вида.[6][7]
Как и другие виды эпителия, роговичный эпителий содержит иммунные клетки Лангерганса, причём, по данным одного исследования, у носителей контактных линз их число почти вдвое больше по сравнению с теми, кто не носит линз.[8]
Обновление эпителия[править | править код]
«Мозаичный анализ» обновления эпителия стволовыми клетками в глазе мыши. Применено окрашивание с помощью гена-репортера, кодирующего белок бета-галактозидазу. Половина клеток тела мыши в этой модели экпрессирует трансген XLacZ, половина — нет. На фотографиях глаз разных «мозаичных» мышей можно наблюдать, как новые клетки продвигаются к центру, создавая небольшой «водоворот». A: три недели после рождения, стволовые клетки только начинают активироваться; B: 6 недель; C: 8 недель; D: 10 недель; E: 15 недель; F: 20 недель; G: 26 недель. Фрагмент иллюстрации из Mort et al., 2009.[9]
Клетки эпителия, наряду с кератоцитами стромы и клетками эндотелия, составляют одну из трёх основных клеточных популяций, из которых строится роговица. Популяция поддерживается находящимися на периферии стволовыми клетками лимба (англ. limbal stem cells, LSC). Стволовые клетки порождают временно делящиеся клетки (англ. transient amplifying cell, TAC), которые пролиферируют и мигрируют к центру, в какой-то момент времени совершают своё последнее деление, дифференцируются и поднимаются всё ближе к поверхности, где они постоянно отшелушиваются с верхнего слоя.[9]
Повреждения и заболевания[править | править код]
При синдроме под названием «рецидивирующая эрозия роговицы» нарушается крепление клеток эпителия к слою Боумена.
При роговичной дистрофии Месманна в толще эпителия образуются кисты.
Еще одно расстройство, поражающее эпителий — редко встречающаяся дистрофия базальной мембраны эпителия (Map-Dot-Fingerprint), некоторые случаи которой ассоциированы с мутациями гена TGFBI.[11]
У пациентов, прошедших процедуру LASIK, может наблюдаться врастание эпителия под лоскут.[12] Это отклонение, обнаруживаемое примерно в 1 % случаев, обычно проходит само собой, но изредка оно всё же вызывает необходимость в хирургическом вмешательстве.[13]
Любое, даже слабое, повреждение эпителия вызывает немедленный апоптоз низлежащих кератоцитов стромы, впоследствии восполняющих свою численность. Причины и механизмы этого процесса активно исследуются.[14] Гибель, трансформация и пролиферация кератоцитов может происходить под влиянием сигнальных молекул — цитокинов, выделяемых клетками эпителия.
При кератоконусе в эпителии роговицы отмечаются отклонения в экспрессии генов, их обнаружение может помочь в расследовании причин заболевания.[15][16]
См. также[править | править код]
- Высокая экспрессия в эпителии роговицы:
- Катепсин L2
- Кератин 3 и кератин 12 — образуют димеры
- Кератоэпителин
Примечания[править | править код]
- ↑ 1 2 Foundational Model of Anatomy
- ↑ Encyclopedia of Biomaterials and Biomedical Engineering By Gary E. Wnek, Gary L. Bowlin Contributor Gary E. Wnek Edition: 2 Published by Informa Health Care, 2008 ISBN 1420079565, 9781420079562; Эпителий описан на стр. 2707
- ↑ Liu S., Li J., Tan D. T., Beuerman R. W. Expression and function of muscarinic receptor subtypes on human cornea and conjunctiva (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2007. — July (vol. 48, no. 7). — P. 2987—2996. — doi:10.1167/iovs.06-0880. — PMID 17591863.
- ↑ Ringvold A., Reubsaet J. L. Acetylcholine in the corneal epithelium of diurnal and nocturnal mammals (англ.) // Cornea : journal. — 2005. — November (vol. 24, no. 8). — P. 1000—1003. — PMID 16227851. (недоступная ссылка)
- ↑ Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1681-3. Ascorbic acid content of human corneal epithelium. Brubaker RF, Bourne WM, Bachman LA, McLaren JW. PMID 10845585
- ↑ Collin H. B., Collin S. P. The corneal surface of aquatic vertebrates: microstructures with optical and nutritional function? (англ.) // Philos. Trans. R. Soc. Lond., B, Biol. Sci. : journal. — 2000. — September (vol. 355, no. 1401). — P. 1171—1176. — doi:10.1098/rstb.2000.0661. — PMID 11079392.
- ↑ Collin S. P., Collin H. B. The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function (англ.) // J. Morphol. : journal. — 2006. — March (vol. 267, no. 3). — P. 273—291. — doi:10.1002/jmor.10400. — PMID 16323209.
- ↑ Zhivov A., Stave J., Vollmar B., Guthoff R. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers (англ.) // Cornea : journal. — 2007. — January (vol. 26, no. 1). — P. 47—54. — doi:10.1097/ICO.0b013e31802e3b55. — PMID 17198013.
- ↑ 1 2 Mort R. L., Ramaesh T., Kleinjan D. A., Morley S. D., West J. D. Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium (англ.) // BMC Dev. Biol. (англ.)русск. : journal. — 2009. — Vol. 9. — P. 4. — doi:10.1186/1471-213X-9-4. — PMID 19128502.
- ↑ Klintworth G. K. Corneal dystrophies (англ.) // Orphanet J Rare Dis (англ.)русск. : journal. — 2009. — Vol. 4. — P. 7. — doi:10.1186/1750-1172-4-7. — PMID 19236704.
- ↑ CORNEAL DYSTROPHY, EPITHELIAL BASEMENT MEMBRANE — генетический каталог OMIM
- ↑ Sridhar M. S., Rao S. K., Vajpayee R. B., Aasuri M. K., Hannush S., Sinha R. Complications of laser-in-situ-keratomileusis (англ.) // Indian J Ophthalmol (англ.)русск. : journal. — 2002. — December (vol. 50, no. 4). — P. 265—282. — PMID 12532491.
- ↑ Toda I. LASIK and the ocular surface (неопр.) // Cornea. — 2008. — September (т. 27 Suppl 1). — С. S70—6. — doi:10.1097/ICO.0b013e31817f42c0. — PMID 18813078. (недоступная ссылка)
- ↑ Wilson S. E., Chaurasia S. S., Medeiros F. W. Apoptosis in the initiation, modulation and termination of the corneal wound healing response (англ.) // Exp. Eye Res. : journal. — 2007. — September (vol. 85, no. 3). — P. 305—311. — doi:10.1016/j.exer.2007.06.009. — PMID 17655845.
- ↑ Nielsen K., Birkenkamp-Demtröder K., Ehlers N., Orntoft T. F. Identification of differentially expressed genes in keratoconus epithelium analyzed on microarrays (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2003. — June (vol. 44, no. 6). — P. 2466—2476. — PMID 12766045.
- ↑ Rabinowitz Y. S., Dong L., Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5 (англ.) // Invest. Ophthalmol. Vis. Sci. (англ.)русск. : journal. — 2005. — April (vol. 46, no. 4). — P. 1239—1246. — doi:10.1167/iovs.04-1148. — PMID 15790884.
Источник
Написала Левина Дарья, последняя правка от 20.10.2018
Пигментный эпителий — самый наружный слой сетчатки, примыкающий к внутренней поверхности сосудистой оболочки, вырабатывает зрительный пурпур. Мембраны пальцевидных отростков пигментного эпителия находятся в постоянном и тесном контакте с фоторецепторами.
Пигментный эпителий сетчатки очень плотно связан с мембраной Бруха. Он состоит из одного слоя низкопризматических 5-6-гранных клеток, содержащих пигментные гранулы. Гранулярный цитоплазматический ретикулум расположен в апикальных отделах клеток и состоит из 4-8 параллельно расположенных щелей. Остальная протоплазма заполнена элементами агранулярного ретикулума и митохондриями. Пигментные меланиновые гранулы, диаметр которых составляет 1,5-3,0 мкм, окружены мембраной.
Гистологические структуры пигментного эпителия тесно связаны с его функциями. Шестигранные пигментированные клетки эпителия образуют монослой очень плотно связанных между собой элементов. Их базальные поверхности соединены со стекловидной пластинкой при помощи многочисленных складок клеточной мембраны, а боковые поверхности клеток пигментного эпителия имеют связь между собой за счет собственных складок. Поверхности клеток пигментного эпителия, которые обращены к палочкам и колбочкам, имеют многочисленные короткие и длинные реснички. Короткие реснички располагаются между терминальными отделами палочек и колбочек. Длинные реснички располагаются между фоторецепторами.
Пигментные клетки сетчатки отличаются от пигментных клеток хориоидеи и характеризуются своей устойчивостью к различным не адекватным тканям глаза веществам. В области макулы клетки пигментного эпителия принимают цилиндрическую форму и содержат много пигментных гранул. По направлению к периферии сетчатки клетки приобретают более плоскую форму.
По данным некоторых исследователей, в течение суток каждя клетка пигментного эпителия фагоцитирует от 2000 до 4000 палочковых дисков. В среднем в течение 1 мин лизируются, фагоцитируются и утилизируются 2-3 палочковых диска.
Функции ретинального пигментного эпителия:обеспечивает так называемый внешний гематоретинальный барьер, который препятствует попаданию в сетчатку из хориокалилляров больших молекул
- поглощение света,
- способствует химическому восстановлению светочувствительного пигмента, который обеспечивается на свету,
- постоянный фагоцитоз освобождающихся фосфолипидных дисков с верхушек наружных сегментов палочек и колбочек
- участвует в электрогенезе и развитии биоэлектрических реакций
- регулирует и поддерживает водный и ионный баланс в субретинальном пространстве
- участие в продукции кислых мукополисахаридов,
- депонирование витамина А,
- участие в липидном обмене
- выработка цитокинов
- обеспечивает обработку и выборочную поставку питательных веществ и кислорода из крови хориокапиллярного слоя, обеспечивая нормальное функционирование фоторецепторов.
У альбиносов имеет место нарушение синтеза меланина, и в пигментном слое его почти нет. При нахождении альбиносов в ярко освещенной комнате, свет, попавший внутрь глазного яблока, отражается во всех направлениях непигментированной поверхностью сетчатки и ниже лежащими тканями. Это приводит к возбуждению одним отдельным лучом света большого количества палочек и колбочек, хотя у здорового человека возбуждается только несколько фоторецетпторов. Острота зрения у альбиносов даже при самой лучшей оптической коррекции редко превышает 0,2-0,1 (норма 1,0).
В течение жизни в пигментном эпителии проходит накопление конечных продуктов, что не полностью распались — липофусцина; также проходит откладывание его между пигментным эпителием и мембраной Бруха в виде друз. Друзы является признаком развития возрастной макулодистрофии. Нарушения со стороны пигментного эпителия сетчатки имеют место и при пигментном ретините.
Также вам будут интересны:
Возрастная макулярная дегенерация
Заболевание представляет собой хронический дистрофический процесс с преимущественным поражением хориокапиллярного слоя, мембраны Бруха и пигментного эпителия с последующим вовлечением фоторецепторов. Тяжесть…
Гематоофтальмический барьер
Понятие о гематоофтальмическом барьере (ГОБ) основывалось на экспериментальных данных и связывалось на протяжении довольно длительного времени с функцией капилляров и эпителия в отростках цилиарного тела:…
Пигментный ретинит
это прогрессирующее наследственное заболевание с первичным диффузным поражением фоторецепторов и пигментного эпителия сетчатки, при котором отмечаются характерные функциональные изменения и типичная картина…
Источник
При синдроме под названием «рецидивирующая эрозия роговицы» нарушается крепление клеток эпителия к слою Боумена.
При роговичной дистрофии Месманна в толще эпителия образуются кисты.
Еще одно расстройство, поражающее эпителий — редко встречающаяся дистрофия базальной мембраны эпителия (Map-Dot-Fingerprint), некоторые случаи которой ассоциированы с мутациями гена TGFBI.[10]
У пациентов, прошедших процедуру LASIK, может наблюдаться врастание эпителия под лоскут.[11] Это отклонение, обнаруживаемое примерно в 1 % случаев, обычно проходит само собой, но изредка оно всё же вызывает необходимость в хирургическом вмешательстве.[12]
Любое, даже слабое, повреждение эпителия вызывает немедленный апоптоз низлежащих кератоцитов стромы, впоследствии восполняющих свою численность. Причины и механизмы этого процесса активно исследуются.[13] Гибель, трансформация и пролиферация кератоцитов может происходить под влиянием сигнальных молекул — цитокинов, выделяемых клетками эпителия.
При кератоконусе в эпителии роговицы отмечаются отклонения в экспрессии генов, их обнаружение может помочь в расследовании причин заболевания.[14][15]
См. также
- Высокая экспрессия в эпителии роговицы:
- Катепсин L2
- Кератин 3 и кератин 12 — образуют димеры
- Кератоэпителин
Примечания
- ↑ Encyclopedia of Biomaterials and Biomedical Engineering By Gary E. Wnek, Gary L. Bowlin Contributor Gary E. Wnek Edition: 2 Published by Informa Health Care, 2008 ISBN 1420079565, 9781420079562; Эпителий описан на стр. 2707
- ↑ Liu S, Li J, Tan DT, Beuerman RW (July 2007). «Expression and function of muscarinic receptor subtypes on human cornea and conjunctiva». Invest. Ophthalmol. Vis. Sci. 48 (7): 2987–96. DOI:10.1167/iovs.06-0880. PMID 17591863.
- ↑ Ringvold A, Reubsaet JL (November 2005). «Acetylcholine in the corneal epithelium of diurnal and nocturnal mammals». Cornea 24 (8): 1000–3. PMID 16227851.
- ↑ Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1681-3. Ascorbic acid content of human corneal epithelium. Brubaker RF, Bourne WM, Bachman LA, McLaren JW. PMID 10845585
- ↑ Collin HB, Collin SP (September 2000). «The corneal surface of aquatic vertebrates: microstructures with optical and nutritional function?». Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355 (1401): 1171–6. DOI:10.1098/rstb.2000.0661. PMID 11079392.
- ↑ Collin SP, Collin HB (March 2006). «The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function». J. Morphol. 267 (3): 273–91. DOI:10.1002/jmor.10400. PMID 16323209.
- ↑ Zhivov A, Stave J, Vollmar B, Guthoff R (January 2007). «In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers». Cornea 26 (1): 47–54. DOI:10.1097/ICO.0b013e31802e3b55. PMID 17198013.
- ↑ 1 2 Mort RL, Ramaesh T, Kleinjan DA, Morley SD, West JD (2009). «Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium». BMC Dev. Biol. 9: 4. DOI:10.1186/1471-213X-9-4. PMID 19128502.
- ↑ Klintworth GK (2009). «Corneal dystrophies». Orphanet J Rare Dis 4: 7. DOI:10.1186/1750-1172-4-7. PMID 19236704.
- ↑ CORNEAL DYSTROPHY, EPITHELIAL BASEMENT MEMBRANE — генетический каталог OMIM
- ↑ Sridhar MS, Rao SK, Vajpayee RB, Aasuri MK, Hannush S, Sinha R (December 2002). «Complications of laser-in-situ-keratomileusis». Indian J Ophthalmol 50 (4): 265–82. PMID 12532491.
- ↑ Toda I (September 2008). «LASIK and the ocular surface». Cornea 27 Suppl 1: S70–6. DOI:10.1097/ICO.0b013e31817f42c0. PMID 18813078.
- ↑ Wilson SE, Chaurasia SS, Medeiros FW (September 2007). «Apoptosis in the initiation, modulation and termination of the corneal wound healing response». Exp. Eye Res. 85 (3): 305–11. DOI:10.1016/j.exer.2007.06.009. PMID 17655845.
- ↑ Nielsen K, Birkenkamp-Demtröder K, Ehlers N, Orntoft TF (June 2003). «Identification of differentially expressed genes in keratoconus epithelium analyzed on microarrays». Invest. Ophthalmol. Vis. Sci. 44 (6): 2466–76. PMID 12766045.
- ↑ Rabinowitz YS, Dong L, Wistow G (April 2005). «Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5». Invest. Ophthalmol. Vis. Sci. 46 (4): 1239–46. DOI:10.1167/iovs.04-1148. PMID 15790884.
Wikimedia Foundation.
2010.
Смотреть что такое «Эпителий роговицы» в других словарях:
Эндотелий роговицы — Роговица человека. 1. эпителий роговицы 2. Боуме … Википедия
Строма роговицы — Роговица человека. 1. эпителий роговицы 2. Боуменов … Википедия
Кератоцит роговицы — У этого термина существуют и другие значения, см. Кератоцит. Кератоциты роговицы особые фибробласты, содержащиеся в строме роговой оболочки глаза. Строма, образованная по большей части коллагеновыми волокнами и другими элементами… … Википедия
Лимб роговицы — (Limbus) … Википедия
Задняя полиморфная дистрофия роговицы, тип 1 — У этого термина существуют и другие значения, см. Задняя полиморфная дистрофия роговицы. Задняя полиморфная дистрофия роговицы, тип 1 … Википедия
Дистрофия роговицы Месманна — Дистрофия роговицы Месманна … Википедия
Задняя полиморфная дистрофия роговицы, тип 2 — У этого термина существуют и другие значения, см. Задняя полиморфная дистрофия роговицы. Задняя полиморфная дистрофия роговицы, тип 2 … Википедия
Задняя полиморфная дистрофия роговицы, тип 3 — У этого термина существуют и другие значения, см. Задняя полиморфная дистрофия роговицы. Задняя полиморфная дистрофия роговицы, тип 3 … Википедия
Основное вещество роговицы — Основное вещество роговицы, или строма роговицы прозрачный слой, составляющий основную часть роговой оболочки глаза. Строма образована множеством ламелл параллельно расположенных пластинок, сплетённых из волокон коллагена. Сами коллагеновые… … Википедия
Дистрофия роговицы Лиша — OMIM 300778 300778 Эпителиальная дистрофия роговицы Лиша (англ. Lisch epithelial corneal dystrophy, LECD, band shaped and whorled microcystic dystrophy of the corneal epithelium) редкая форма дистрофии роговой оболочки человеческого глаза.… … Википедия
Источник