Биоэлектрические процессы в рецепторах сетчатки при действии света
Зрительный
анализатор представляет собой совокупность
структур, воспринимающих световую
энергию в виде электромагнитного
излучения с длиной волны 400 — 700 нм и
дискретных частиц фотонов, или квантов,
и формирующих зрительные ощущения. С
помощью глаза воспринимается 80-90% всей
информации об окружающем мире.
Благодаря
деятельности зрительного анализатора
различают освещенность предметов, их
цвет, форму, величину, направление
передвижения, расстояние, на которое
они удалены от глаза и друг от друга.
Все это позволяет оценивать пространство,
ориентироваться в окружающем мире,
выполнять различные виды целенаправленной
деятельности.
Наряду
с понятием зрительного анализатора
существует понятие органа зрения.
Орган
зрения — это глаз, включающий три различных
в функциональном отношении элемента:
Ø
глазное яблоко, в котором расположены
световоспринимающий, светопреломляющий
и светорегулирующий аппараты;
Ø
защитные приспособления, т. е. наружные
оболочки глаза (склера и роговица),
слезный аппарат, веки, ресницы, брови;
Ø
двигательный аппарат, представленный
тремя парами глазных мышц (наружная и
внутренняя прямые, верхняя и нижняя
прямые, верхняя и нижняя косые), которые
иннервируются III (глазодвигательный
нерв), IV (блоковый нерв) и VI (отводящий
нерв) парами черепных нервов.
Структурно-функциональная
характеристика
Рецепторный
(периферический) отдел зрительного
анализатора (фоторецепторы) подразделяется
на палочковые и колбочковые нейросенсорные
клетки, наружные сегменты которых имеют
соответственно палочковидную («палочки»)
и колбочковидную («колбочки») формы.
У человека насчитывается 6-7 млн. колбочек
и 110 — 125 млн. папочек.
Место
выхода зрительного нерва из сетчатки
не содержит фоторецепторов и называется
слепым пятном. Латерально от слепого
пятна в области центральной ямки лежит
участок наилучшего видения — желтое
пятно, содержащее преимущественно
колбочки. К периферии сетчатки число
колбочек уменьшается, а число палочек
возрастает, и периферия сетчатки содержит
одни лишь палочки.
Различия
функций колбочек и палочек лежит в
основе феномена двойственности зрения.
Палочки являются рецепторами,
воспринимающими световые лучи в условиях
слабой освещенности, т. е. бесцветное,
или ахроматическое, зрение. Колбочки
же функционируют в условиях яркой
освещенности и характеризуются разной
чувствительностью к спектральным
свойствам света (цветное или хроматическое
зрение). Фоторецепторы обладают очень
высокой чувствительностью, что обусловлено
особенностью строения рецепторов и
физико-химических процессов, лежащих
в основе восприятия энергии светового
стимула. Полагают, что фоторецепторы
возбуждаются при действии на них 1 — 2
квантов света.
Палочки
и колбочки состоят из двух сегментов —
наружного и внутреннего, которые
соединяются между собой посредством
узкой реснички. Палочки и колбочки
ориентированы в сетчатке радиально, а
молекулы светочувствительных белков
расположены в наружных сегментах таким
образом, что около 90% их светочувствительных
групп лежат в плоскости дисков, входящих
в состав наружных сегментов. Свет
оказывает наибольшее возбуждающее
действие в том случае, если направление
луча совпадает с длинной осью палочки
или колбочки, при этом он направлен
перпендикулярно дискам их наружных
сегментов.
Фотохимические
процессы в сетчатке глаза. В рецепторных
клетках сетчатки находятся
светочувствительные пигменты (сложные
белковые вещества) — хромопротеиды,
которые обесцвечиваются на свету. В
палочках на мембране наружных сегментов
содержится родопсин, в колбочках —
йодопсин и другие пигменты.
Родопсин
и йодопсин состоят из ретиналя (альдегида
витамина А1) и гликопротеида (опсина).
Имея сходство в фотохимических процессах,
они различаются тем, что максимум
поглощения находится в различных
областях спектра. Палочки, содержащие
родопсин, имеют максимум поглощения в
области 500 нм. Среди колбочек различают
три типа, которые отличаются максимумами
в спектрах поглощения: одни имеют
максимум в синей части спектра (430 — 470
нм), другие в зеленой (500 — 530), третьи — в
красной (620 — 760 нм) части, что обусловлено
наличием трех типов зрительных пигментов.
Красный колбочковый пигмент получил
название «йодопсин». Ретиналь может
находиться в различных пространственных
конфигурациях (изомерных формах), но
только одна из них — 11-ЦИС-изомер ретиналя
выступает в качестве хромофорной группы
всех известных зрительных пигментов.
Источником ретиналя в организме служат
каротиноиды.
Фотохимические
процессы в сетчатке протекают весьма
экономно. Даже при действии яркого света
расщепляется только небольшая часть
имеющегося в палочках родопсина (около
0,006%).
В
темноте происходит ресинтез пигментов,
протекающий с поглощением энергии.
Восстановление йодопсина протекает в
530 раз быстрее, чем родопсина. Если в
организме снижается содержание витамина
А, то процессы ресинтеза родопсина
ослабевают, что приводит к нарушению
сумеречного зрения, так называемой
куриной слепоте. При постоянном и
равномерном освещении устанавливается
равновесие между скоростью распада и
ресинтеза пигментов. Когда количество
света, падающего на сетчатку, уменьшается,
это динамическое равновесие нарушается
и сдвигается в сторону более высоких
концентраций пигмента. Этот фотохимический
феномен лежит в основе темновой адаптации.
Особое
значение в фотохимических процессах
имеет пигментный слой сетчатки, который
образован эпителием, содержащим фусцин.
Этот пигмент поглощает свет, препятствуя
отражению и рассеиванию его, что
обусловливает четкость зрительного
восприятия. Отростки пигментных клеток
окружают светочувствительные членики
палочек и колбочек, принимая участие в
обмене веществ фоторецепторов и в
синтезе зрительных пигментов.
Вследствие
фотохимических процессов в фоторецепторах
глаза при действии света возникает
рецепторный потенциал, который
представляет собой гиперполяризацию
мембраны рецептора. Это отличительная
черта зрительных рецепторов, активация
других рецепторов выражается в виде
деполяризации их мембраны. Амплитуда
зрительного рецепторного потенциала
увеличивается при увеличении интенсивности
светового стимула. Так, при действии
красного цвета, длина волны которого
составляет 620 — 760 нм, рецепторный потенциал
более выражен в фоторецепторах центральной
части сетчатки, а синего (430 — 470 нм) — в
периферической.
Синаптические
окончания фоторецепторов конвергируют
на биполярные нейроны сетчатки. При
этом фоторецепторы центральной ямки
связаны только с одним биполяром.
Проводниковый отдел зрительного
анализатора начинается от биполярных
клеток, затем ганглиозные клетки, затем
зрительный нерв, затем зрительная
информация поступает на латеральные
коленчатые тела таламуса, откуда в
составе зрительной лучистости проецируется
на первичные зрительные поля.
Первичными
зрительными полями коры является поле
16 и поле 17 – это шпорная борозда затылочной
доли.Для человека характерно бинокулярное
стереоскопическое зрения, то есть
способность различать объем предмета
и рассматривать двумя глазами. Характерна
световая адаптация, то есть приспособление
к определенным условиям освещения.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Фоторецепторный слой сетчатки человека образован примерно 130 миллионами клеток, из которых около семи миллионов являются колбочками, основная масса которых сосредоточена в области центральной ямки, а все остальные фоторецепторы представлены палочками. У обеих разновидностей фоторецепторов существуют три функциональные области: 1) наружный, или внешний, сегмент, ориентированный в направлении эпителиального пигментного слоя и содержащий зрительный пигмент; 2) внутренний сегмент, в котором расположено клеточное ядро и происходят биохимические процессы, связанные с жизнедеятельностью клетки; 3) синаптические окончания, предназначенные для передачи информации от фоторецепторов к биполярным клеткам с помощью медиатора глутамата.
Зрительный пигмент палочек родопсин состоит из двух компонентов: это молекула ретиналя, образующаяся из витамина А и способная поглощать свет, а также крупная белковая молекула опсина, не поглощающая свет. Молекула опсина представляет собой извитую цепь из 348 аминокислот, которая семь раз проходит через мембрану зрительного диска, образованного из клеточной мембраны фоторецептора. В наружном сегменте фоторецептора имеется большое количество таких дисков, расположенных подобно стопке поставленных друг на друга монет. Ретиналь существует в темноте как 11-цис-ретиналь, такая форма изомера идеально соответствует упорядоченному расположению аминокислот в опсине. Энергия поглощенных фотонов превращает ретиналь в 11-транс-изомер, что приводит к конформационным изменениям молекулы опсина и превращению родопсина в нестабильный метародопсин, который сразу же распадается на ретиналь и опсин. Таким образом, действие света уменьшает концентрацию родопсина в фоторецепторе, что приводит к изменениям активности вторичных посредников и величины мембранного потенциала фоторецептора. В темноте происходит ферментативный ресинтез расщепленного родопсина, для которого используется витамин А, поступающий в организм человека с пищей.
Способность родопсина поглощать волны почти всего светового диапазона позволяет палочкам обеспечить только ахроматическое, т. е. черно-белое, зрение и лишает их возможности различать цвет -наиболее чувствительные фоторецепторы сетчатки, образуют скотопическую систему, или систему ночного зрения.
Опсин колбочек отличается составом аминокислот, колбочки содержат меньшее количество зрительного пигмента — образуют фотопическую систему, или систему дневного зрения.
В сетчатке человека существуют три типа колбочек, различающихся между собой по составу аминокислот в опсине зрительного пигмента. Различия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствительность к световым волнам разной длины — восприятие всей цветовой палитры.
Биоэлектрические процессы. Специфической особенностью фоторецепторов является темновой ток катионов через открытые мембранные каналы внешних сегментов. Эти каналы открываются при высокой концентрации цГМФ, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мембрану фоторецептора до приблизительно —40 мВ, что приводит к выделению медиатора в его синаптическом окончании. Активированные поглощением света молекулы зрительного пигмента стимулируют активность фосфодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В результате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фоторецепторов гиперполяризуется приблизительно до —70 мВ, эта гиперполяризация мембраны является рецепторным потенциалом. При возникновении рецепторного потенциала прекращается выделение глутамата в синаптических окончаниях фоторецептора.
Фоторецепторы образуют синапсы с биполярными клетками двух типов, различающихся по способу управления хемозависимыми натриевыми каналами в синапсах. Действие глутамата приводит к открытию каналов для ионов натрия и деполяризации мембраны одних биполярных клеток и к закрытию натриевых каналов и гиперполяризации биполярных клеток другого типа. Наличие двух типов биполярных клеток необходимо для формирования антагонизма между центром и периферией рецептивных полей ганглиозных клеток.
Источник
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:
Otvety_FIZIOLOGIYa.docx
Скачиваний:
2866
Добавлен:
28.02.2016
Размер:
576.27 Кб
Скачать
Зрительный
анализатор
включает в себя — периферическую часть
(глазное яблоко), проводящий отдел
(зрительные нервы, подкорковые зрительные
центры) и корковую часть анализатора.Орган
зрения — глаз — включает в себя
рецепторный аппарат (сетчатку) и
оптическую систему, которая фокусирует
световые лучи и обеспечивает четкость
изображения предметов в сетчатке в
уменьшенном и обратном виде.Сетчатка
расположена на задней стенке глазного
яблока, ее основная роль — преобразование
света в электрические потенциалы.
Сетчатка состоит из 4 основных слоев:
пигментный;
слой
палочек и колбочек (около 110-125 млн.
палочек и 6 млн. колбочек);слой
биполярных клеток;слой
ганглиозных клеток.
Нервные
волокна ганглиозных клеток, собираясь,
образуют зрительный нерв. На сетчатке
(глазном дне) имеются два образования
— слепое пятно (выход нерва, фоторецепторов
нет) и желтое пятно (палочек нет, а
плотность колбочек самая высокая).
Волокна зрительного нерва идут в
подкорковую часть зрительного
анализатора — наружные коленчатые тела
переднего двухолмия, затем в кору
головного мозга — затылочную долю. От
коры к сетчатке, также идут волокна,
обеспечивающие корковый контроль.Фоторецепторы
(колбочки и палочки) обладают разной
чувствительностью к цвету и свету:
колбочки слабо чувствительны к
цвету, колбочки — обеспечивают дневное
восприятие света. Палочки — не
чувствительны к цвету, но чувствительны
к свету (сумеречное зрение).Электрические
явления в зрительном рецепторе.
Фотохимические изменения зрительных
пигментов палочек и коробочек
представляют собой начальное звено
в цепи явлений возбуждения зрительных
рецепторов.Когда
лучи света попадают на сетчатку: в ней
происходит ряд химических превращений,
связанных с преобразованием зрительных
пигментов. В палочках — родопсин
(зрительный пурпур), в колбочках
иодопсин. В результате энергия света
превращается в электрические сигналы
— импульсы. Так, родопсин под влиянием
света претерпевает ряд химических
изменений — превращается в ретинол
(альдегид витамина А) и белковый остаток
— опсин. Затем под влиянием фермента
редуктазы он переходит в витамин А,
который поступает в пигментный слой.
В темноте происходит обратная реакция
— витамин А восстанавливается, проходя
ряд стадий.Вслед
за комплексом фотохимических реакций
возникают электрические изменения.
При световом раздражении от глаза
можно зарегистрировать электроретинограмму,
на которой различают 4 волны (a, b, c, d).
Волна С — палочковая. Анализ ЭРГ может
дать немало информации о состоянии
сетчатки.Медленные
колебания электрических потенциалов
при световом раздражении (ЭРГ)
сопровождаются возникновением
потенциалов действия в ганглиозных
клетках сетчатки, от которых отходят
волокна зрительного нерва. Одна
ганглиозная клетка через много
биполярных и горизонтальных нейронов
связана с тысячами фоторецепторов
(около 1 млн.). На 130 млн. палочек и
колбочек есть 1 млн. нервных волокон.
На нейронах сетчатки может возникать
как суммация волн возбуждения, так и
их окклюзия. Поскольку нейронам сетчатки
свойственны те же самые свойства, что
и нервным центрам, это дает основание
читать нейроны сетчатки вынесенной
на периферию частью ЦНС.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Фоторецепторный слой сетчатки человека образован примерно 130 миллионами клеток, из которых около семи миллионов являются колбочками, основная масса которых сосредоточена в области центральной ямки, а все остальные фоторецепторы представлены палочками. У обеих разновидностей фоторецепторов существуют три функциональные области: 1) наружный, или внешний, сегмент, ориентированный в направлении эпителиального пигментного слоя и содержащий зрительный пигмент; 2) внутренний сегмент, в котором расположено клеточное ядро и происходят биохимические процессы, связанные с жизнедеятельностью клетки; 3) синаптические окончания, предназначенные для передачи информации от фоторецепторов к биполярным клеткам с помощью медиатора глутамата.
Зрительный пигмент палочек родопсин состоит из двух компонентов: это молекула ретиналя, образующаяся из витамина А и способная поглощать свет, а также крупная белковая молекула опсина, не поглощающая свет. Молекула опсина представляет собой извитую цепь из 348 аминокислот, которая семь раз проходит через мембрану зрительного диска, образованного из клеточной мембраны фоторецептора. В наружном сегменте фоторецептора имеется большое количество таких дисков, расположенных подобно стопке поставленных друг на друга монет. Ретиналь существует в темноте как 11-цис-ретиналь, такая форма изомера идеально соответствует упорядоченному расположению аминокислот в опсине. Энергия поглощенных фотонов превращает ретиналь в 11-транс-изомер, что приводит к конформационным изменениям молекулы опсина и превращению родопсина в нестабильный метародопсин, который сразу же распадается на ретиналь и опсин. Таким образом, действие света уменьшает концентрацию родопсина в фоторецепторе, что приводит к изменениям активности вторичных посредников и величины мембранного потенциала фоторецептора. В темноте происходит ферментативный ресинтез расщепленного родопсина, для которого используется витамин А, поступающий в организм человека с пищей.
Способность родопсина поглощать волны почти всего светового диапазона позволяет палочкам обеспечить только ахроматическое, т. е. черно-белое, зрение и лишает их возможности различать цвет -наиболее чувствительные фоторецепторы сетчатки, образуют скотопическую систему, или систему ночного зрения.
Опсин колбочек отличается составом аминокислот, колбочки содержат меньшее количество зрительного пигмента — образуют фотопическую систему, или систему дневного зрения.
В сетчатке человека существуют три типа колбочек, различающихся между собой по составу аминокислот в опсине зрительного пигмента. Различия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствительность к световым волнам разной длины — восприятие всей цветовой палитры.
Биоэлектрические процессы. Специфической особенностью фоторецепторов является темновой ток катионов через открытые мембранные каналы внешних сегментов. Эти каналы открываются при высокой концентрации цГМФ, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мембрану фоторецептора до приблизительно —40 мВ, что приводит к выделению медиатора в его синаптическом окончании. Активированные поглощением света молекулы зрительного пигмента стимулируют активность фосфодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В результате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фоторецепторов гиперполяризуется приблизительно до —70 мВ, эта гиперполяризация мембраны является рецепторным потенциалом. При возникновении рецепторного потенциала прекращается выделение глутамата в синаптических окончаниях фоторецептора.
Фоторецепторы образуют синапсы с биполярными клетками двух типов, различающихся по способу управления хемозависимыми натриевыми каналами в синапсах. Действие глутамата приводит к открытию каналов для ионов натрия и деполяризации мембраны одних биполярных клеток и к закрытию натриевых каналов и гиперполяризации биполярных клеток другого типа. Наличие двух типов биполярных клеток необходимо для формирования антагонизма между центром и периферией рецептивных полей ганглиозных клеток.
Источник